Line 33: | Line 33: | ||
|- | |- | ||
− | | 11 | + | | [[Lecture11ECE662S10|11]],12,13 |
| | | | ||
6. Parametric Density Estimation | 6. Parametric Density Estimation | ||
Line 53: | Line 53: | ||
| 8. Linear Discriminants | | 8. Linear Discriminants | ||
|- | |- | ||
− | | [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]] ,[[Lecture24ECE662S10|24]],25 | + | | [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]] ,[[Lecture24ECE662S10|24]],[[Lecture25ECE662S10|25]],[[Lecture26ECE662S10|26]] |
| | | | ||
9. Non-Linear Discriminant functions | 9. Non-Linear Discriminant functions | ||
Line 61: | Line 61: | ||
|- | |- | ||
− | | | + | | 27,28,29,30 |
| 10. Clustering and decision trees | | 10. Clustering and decision trees | ||
|} | |} |
Latest revision as of 07:55, 22 April 2010
Course Outline, ECE662 Spring 2010 Prof. Mimi
Note: This is an approximate outline that is subject to change throughout the semester.
Lecture | Topic |
---|---|
1 | 1. Introduction |
1 | 2. What is pattern Recognition |
2,3 | 3. Finite vs Infinite feature spaces |
4,5 | 4. Bayes Rule |
6-10 |
5. Discriminant functions
|
11,12,13 |
6. Parametric Density Estimation
|
13-19 |
7. Non-parametric Density Estimation
|
19,20,21, 22 | 8. Linear Discriminants |
22, 23 ,24,25,26 |
9. Non-Linear Discriminant functions
|
27,28,29,30 | 10. Clustering and decision trees |
Back to 2010 Spring ECE 662 mboutin