(3 intermediate revisions by the same user not shown)
Line 18: Line 18:
 
| 2. What is pattern Recognition
 
| 2. What is pattern Recognition
 
|-
 
|-
| [[Lecture2ECE662S10|2]],[[Lecture3ECE662S10|3]]
+
| [[Lecture2ECE662S10|2]],[[Lecture3ECE662S10|3]]  
 
| 3. Finite vs Infinite feature spaces
 
| 3. Finite vs Infinite feature spaces
 
|-
 
|-
Line 33: Line 33:
  
 
|-
 
|-
| 11-13  
+
| [[Lecture11ECE662S10|11]],12,13  
 
|  
 
|  
 
6. Parametric Density Estimation  
 
6. Parametric Density Estimation  
Line 50: Line 50:
  
 
|-
 
|-
| 19,20,[[Lecture21ECE662S10|21]], [[Lecture22ECE662S10|22]]
+
| 19,20,[[Lecture21ECE662S10|21]], [[Lecture22ECE662S10|22]]  
 
| 8. Linear Discriminants
 
| 8. Linear Discriminants
 
|-
 
|-
|  
+
| [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]] ,[[Lecture24ECE662S10|24]],[[Lecture25ECE662S10|25]],[[Lecture26ECE662S10|26]]
 
|  
 
|  
 
9. Non-Linear Discriminant functions  
 
9. Non-Linear Discriminant functions  
  
 
*Support Vector Machines   
 
*Support Vector Machines   
*Artificial Neural Networks  
+
*Artificial Neural Networks
*Decision Trees
+
  
 
|-
 
|-
|  
+
| 27,28,29,30
| 10. Clustering
+
| 10. Clustering and decision trees
 
|}
 
|}
  

Latest revision as of 07:55, 22 April 2010


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2,3 3. Finite vs Infinite feature spaces
4,5 4. Bayes Rule
6-10

5. Discriminant functions

  • Definition;
  • Application to normally distributed features;
  • Error analysis.
11,12,13

6. Parametric Density Estimation

  • Maximum likelihood estimation
  • Bayesian parameter estimation
13-19

7. Non-parametric Density Estimation

  • Parzen Windows
  • K-nearest neighbors
  • The nearest neighbor classification rule.
19,20,21, 22 8. Linear Discriminants
22, 23 ,24,25,26

9. Non-Linear Discriminant functions

  • Support Vector Machines 
  • Artificial Neural Networks
27,28,29,30 10. Clustering and decision trees



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva