(New page: The opposite or complement of an event A is(that is, the event of A not occurring)is <math>P(A') = 1 - P(A)\,</math> If two events, A and B are independent then the joint probability...) |
|||
(20 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Category:Formulas]] | |
+ | [[Category:probability]] | ||
− | + | <center><font size= 4> | |
+ | '''[[Collective_Table_of_Formulas|Collective Table of Formulas]]''' | ||
+ | </font size> | ||
− | + | Probability Formulas | |
− | + | click [[Collective_Table_of_Formulas|here]] for [[Collective_Table_of_Formulas|more formulas]] | |
− | + | </center> | |
− | + | ---- | |
+ | {| | ||
+ | |- | ||
+ | ! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Probability Formulas | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Properties of Probability Functions | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
+ | | <math>\,P(A^c) = 1 - P(A)\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The intersection of two independent events A and B | ||
+ | | <math>\,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The union of two events A and B (i.e. either A or B occurring) | ||
+ | | <math>\,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The union of two mutually exclusive events A and B | ||
+ | | <math>\,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Event A occurs given that event B has occurred | ||
+ | | <math>\,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Total Probability Law | ||
+ | | <math>\,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\,</math> | ||
+ | <math> \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }.</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Bayes Theorem | ||
+ | | <math>\,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }.</math> | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Expectation and Variance of Random Variables | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Binomial random variable with parameters n and p | ||
+ | | <math>\,E[X] = np,\ \ Var(X) = np(1-p)\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Poisson random variable with parameter <math>\lambda</math> | ||
+ | | <math>\,E[X] = \lambda,\ \ Var(X) = \lambda\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Geometric random variable with parameter p | ||
+ | | <math>\,E[X] = \frac{1}{p},\ \ Var(X) = \frac{1-p}{p^2}\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Uniform random variable over (a,b) | ||
+ | | <math>\,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Gaussian random variable with parameter <math>\mu \mbox{ and } \sigma^2</math> | ||
+ | | <math>\,E[X] = \mu,\ \ Var(X) = \sigma^2\,</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | Exponential random variable with parameter <math>\lambda</math> | ||
+ | | <math>\,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\,</math> | ||
+ | |} | ||
− | + | ---- | |
+ | ==Relevant Courses== | ||
+ | *[[ECE600|ECE600]] | ||
+ | *[[ECE302|ECE302]] | ||
+ | ---- | ||
+ | [[Collective Table of Formulas|Back to Collective Table]] | ||
− | + | [[Category:Formulas]] |
Latest revision as of 11:54, 3 March 2015
Probability Formulas
click here for more formulas
Probability Formulas | |
---|---|
Properties of Probability Functions | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
The intersection of two independent events A and B | $ \,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\, $ |
The union of two events A and B (i.e. either A or B occurring) | $ \,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\, $ |
The union of two mutually exclusive events A and B | $ \,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\, $ |
Event A occurs given that event B has occurred | $ \,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\, $ |
Total Probability Law | $ \,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\, $
$ \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }. $ |
Bayes Theorem | $ \,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }. $ |
Expectation and Variance of Random Variables | |
Binomial random variable with parameters n and p | $ \,E[X] = np,\ \ Var(X) = np(1-p)\, $ |
Poisson random variable with parameter $ \lambda $ | $ \,E[X] = \lambda,\ \ Var(X) = \lambda\, $ |
Geometric random variable with parameter p | $ \,E[X] = \frac{1}{p},\ \ Var(X) = \frac{1-p}{p^2}\, $ |
Uniform random variable over (a,b) | $ \,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\, $ |
Gaussian random variable with parameter $ \mu \mbox{ and } \sigma^2 $ | $ \,E[X] = \mu,\ \ Var(X) = \sigma^2\, $ |
Exponential random variable with parameter $ \lambda $ | $ \,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\, $ |