Line 61: Line 61:
  
 
--[[User:Jvaught|Jvaught]] 20:14, 30 March 2010 (UTC)
 
--[[User:Jvaught|Jvaught]] 20:14, 30 March 2010 (UTC)
 +
----
 +
[[EE662Sp10AbstarctAlgebra|Back to Jvaught's group theory summary]]
 +
 +
[[2010_Spring_ECE_662_mboutin|Back to ECE662 Spring 2010]]

Latest revision as of 07:37, 2 April 2010

Symmetric Group

The symmetric group $ S_n $, which was mentioned in lecture, is a group of permutation mappings on an arbitrary $ n $ element set. Each element of $ S_n $ is actually a bijection $ \pi:B\to B $ where $ B $ is an arbitrary $ n $ element set. Often, but without loss of generality, $ B $ is taken to be the set $ \{1, 2, \ldots, n\} $. There are $ n! $ elements of $ S_n $. So, for example, the group $ S_3 $ consists of the following 6 elements (each a function from $ \{1, 2, 3\} $ (or any arbitrary 3 element set) to itself):

$ \pi_e $ $ e $ $ 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 3 $
$ \pi_{12} $ $ (1 2) $ $ 1 \mapsto 2, 2 \mapsto 1, 3 \mapsto 3 $
$ \pi_{13} $ $ (1 3) $ $ 1 \mapsto 3, 2 \mapsto 2, 3 \mapsto 1 $
$ \pi_{23} $ $ (2 3) $ $ 1 \mapsto 1, 2 \mapsto 3, 3 \mapsto 2 $
$ \pi_{123} $ $ (1 2 3) $ $ 1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 1 $
$ \pi_{132} $ $ (1 3 2) $ $ 1 \mapsto 3, 2 \mapsto 1, 3 \mapsto 2 $

The binary operation of the symmetric group is function composition. For example,

$ \pi_{12} \cdot \pi_{23} = \pi_{12} \circ \pi_{23} $

But notice (by computing its value on all 3 elements of the domain) that $ \pi_{123} = \pi_{12} \circ \pi_{23} $. This set of functions is actually closed under function composition. It can be shown that this binary operation is associative. Also $ \pi_e $ is obviously the group identity element, and each element has an inverse, specifically:

$ \pi_e = \pi_e^{-1} $
$ \pi_{12} = \pi_{12}^{-1} $
$ \pi_{13} = \pi_{13}^{-1} $
$ \pi_{23} = \pi_{23}^{-1} $
$ \pi_{123} = \pi_{132}^{-1} $
$ \pi_{132} = \pi_{123}^{-1} $

so the group axioms hold.

--Jvaught 20:14, 30 March 2010 (UTC)


Back to Jvaught's group theory summary

Back to ECE662 Spring 2010

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang