(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Category:2010_Spring_ECE_662_mboutin]]
+
<br>
  
= Course Outline, [[ECE662]] Spring 2010 Prof.  =
+
= Course Outline, [[ECE662]] Spring 2010 [[User:Mboutin|Prof. Mimi]] =
Note: This is an approximate outline that is subject to change throughout the semester.
+
  
 +
Note: This is an approximate outline that is subject to change throughout the semester.
  
 +
<br>
  
 +
{| width="55%" cellspacing="1" cellpadding="1" border="1"
 +
|-
 +
! scope="col" | Lecture
 +
! scope="col" | Topic
 +
|-
 +
| [[Lecture1ECE662S10|1]]
 +
| 1. Introduction
 +
|-
 +
| [[Lecture1ECE662S10|1]]
 +
| 2. What is pattern Recognition
 +
|-
 +
| [[Lecture2ECE662S10|2]],[[Lecture3ECE662S10|3]]
 +
| 3. Finite vs Infinite feature spaces
 +
|-
 +
| [[Lecture4ECE662S10|4]],[[Lecture5ECE662S10|5]]
 +
| 4. Bayes Rule
 +
|-
 +
| [[Lecture6ECE662S10|6]]-10
 +
|
 +
5. Discriminant functions
 +
 +
*Definition;
 +
*Application to normally distributed features;
 +
*Error analysis.
 +
 +
|-
 +
| [[Lecture11ECE662S10|11]],12,13
 +
|
 +
6. Parametric Density Estimation
 +
 +
*Maximum likelihood estimation
 +
*Bayesian parameter estimation
 +
 +
|-
 +
| 13-19
 +
|
 +
7. Non-parametric Density Estimation
 +
 +
*Parzen Windows
 +
*K-nearest neighbors
 +
*The nearest neighbor classification rule.
 +
 +
|-
 +
| 19,20,[[Lecture21ECE662S10|21]], [[Lecture22ECE662S10|22]]
 +
| 8. Linear Discriminants
 +
|-
 +
| [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]] ,[[Lecture24ECE662S10|24]],[[Lecture25ECE662S10|25]],[[Lecture26ECE662S10|26]]
 +
|
 +
9. Non-Linear Discriminant functions
 +
 +
*Support Vector Machines&nbsp;
 +
*Artificial Neural Networks
 +
 +
|-
 +
| 27,28,29,30
 +
| 10. Clustering and decision trees
 +
|}
 +
 +
<br>
  
 
----
 
----
 +
 
  [[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]]
 
  [[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]]
 +
 +
[[Category:2010_Spring_ECE_662_mboutin]]

Latest revision as of 07:55, 22 April 2010


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2,3 3. Finite vs Infinite feature spaces
4,5 4. Bayes Rule
6-10

5. Discriminant functions

  • Definition;
  • Application to normally distributed features;
  • Error analysis.
11,12,13

6. Parametric Density Estimation

  • Maximum likelihood estimation
  • Bayesian parameter estimation
13-19

7. Non-parametric Density Estimation

  • Parzen Windows
  • K-nearest neighbors
  • The nearest neighbor classification rule.
19,20,21, 22 8. Linear Discriminants
22, 23 ,24,25,26

9. Non-Linear Discriminant functions

  • Support Vector Machines 
  • Artificial Neural Networks
27,28,29,30 10. Clustering and decision trees



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett