(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | Example | + | == Example of Turning Conditional Distributions Around == |
+ | |||
+ | Let <math>\mathbb{X}</math> and <math>\mathbb{Y}</math> be jointly distributed discrete random variables with ranges <math>X = \{0, 1, 2, 3, 4\}</math> and <math>Y = \{0, 1, 2\}</math> respectively. | ||
Suppose that the conditional distributions <math>P_{\mathbb{X}|\mathbb{Y}}</math> are empirically estimated as follows: | Suppose that the conditional distributions <math>P_{\mathbb{X}|\mathbb{Y}}</math> are empirically estimated as follows: | ||
Line 38: | Line 40: | ||
---- | ---- | ||
+ | |||
+ | === Solution 1 === | ||
By definition <math>P_{\mathbb{X}|\mathbb{Y}}(x|y) = \frac{P_{\mathbb{X},\mathbb{Y}}(x,y)}{P_{\mathbb{Y}}(y)}</math>, so the joint distribution <math>P_{\mathbb{X},\mathbb{Y}}(x,y)</math> can be computed. | By definition <math>P_{\mathbb{X}|\mathbb{Y}}(x|y) = \frac{P_{\mathbb{X},\mathbb{Y}}(x,y)}{P_{\mathbb{Y}}(y)}</math>, so the joint distribution <math>P_{\mathbb{X},\mathbb{Y}}(x,y)</math> can be computed. | ||
Line 119: | Line 123: | ||
---- | ---- | ||
+ | |||
+ | === Solution 2 === | ||
+ | |||
+ | Or, equivalently, we can use Bayes' Rule explicity. | ||
+ | |||
+ | Bayes' Rule is: | ||
+ | |||
+ | <math>P_{\mathbb{Y}|\mathbb{X}}(y|x) = \frac{P_{\mathbb{X}|\mathbb{Y}}(x|y)P_{\mathbb{Y}}(y)}{P_{\mathbb{X}}(x)}</math> | ||
+ | |||
+ | <math>P_{\mathbb{X}}(x)</math> can be computed using: | ||
+ | |||
+ | <math>P_\mathbb{X}(x) = \sum_{y\in Y} P_{\mathbb{X}|\mathbb{Y}}(x|y)P_{\mathbb{Y}}(y)</math> | ||
+ | |||
+ | Thus, calculation of <math>P_{\mathbb{Y}|\mathbb{X}}(Y=0|X=0)</math> would proceed as follows: | ||
+ | |||
+ | <math>P_{\mathbb{Y}|\mathbb{X}}(Y=0|X=0) = \frac{P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=0)P_{\mathbb{Y}}(Y=0)}{P_{\mathbb{X}}(X=0)} = \frac{P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=0)P_{\mathbb{Y}}(Y=0)}{\sum_{y\in Y} P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=y)P_{\mathbb{Y}}(Y=y)}</math> | ||
+ | |||
+ | <math> = \frac{0.175 \cdot 0.63}{0.175 \cdot 0.63 + 0.048 \cdot 0.21 + 0.188 \cdot 0.16} = \frac{.11025}{.15041} = 0.732996476 \approx 0.733</math> | ||
+ | |||
+ | The rest of the conditional distribution can be computed similarly using Bayes' Rule and will result in the same answer as in Solution 1. | ||
+ | * This solution is nearly identical to Solution 1, differing only in that this solution does not contruct the joint probability mass function. | ||
+ | |||
+ | |||
+ | --[[User:Pritchey|Pritchey]] 14:38, 1 February 2010 (UTC) | ||
+ | |||
+ | ---- | ||
+ | |||
+ | === Cost Trade-offs === | ||
+ | |||
+ | The joint <math>P_{\mathbb{X},\mathbb{Y}}</math> and marginal <math>P_\mathbb{X}</math> are essentially common sub-expressions of Bayes' formula. Explicitly computing them once and reusing the result as in Solution 1 avoids redundant computations. However, if some of the conditionals <math>P_{\mathbb{Y}|\mathbb{X}}</math> are not required, Solution 2 avoids unnecessarily computing the entries of <math>P_{\mathbb{X},\mathbb{Y}}</math> and <math>P_\mathbb{X}</math> which won't be used. If all <math>P_{\mathbb{Y}|\mathbb{X}}</math> are required, then all entries of <math>P_{\mathbb{X},\mathbb{Y}}</math> and <math>P_\mathbb{X}</math> will be used. | ||
+ | |||
+ | |||
+ | In this example, Solution 1 requires 15 multiplies, 10 adds and 15 divides, whereas Solution 2 requires 60 multiplies, 30 adds, and 15 divides. However, suppose that only <math>P_{\mathbb{Y}|\mathbb{X}}(Y|X=0)</math> were required. Then Solution 1 would require 15 multiplies, 10 adds, and 3 divides, whereas Solution 2 would only require 12 multiplies, 6 adds, and 3 divides. | ||
+ | |||
+ | |||
+ | In terms of space, Solution 2 has no unnecessary overhead whereas Solution 1 has some. In some cases, the overhead for <math>P_{\mathbb{X},\mathbb{Y}}</math> can be avoided. Since each <math>P_{\mathbb{Y}|\mathbb{X}}</math> depends on exactly one entry of <math>P_{\mathbb{X},\mathbb{Y}}</math>, if all <math>P_{\mathbb{Y}|\mathbb{X}}</math> are required the same memory which will hold <math>P_{\mathbb{Y}|\mathbb{X}}</math> can be temporarily used to hold <math>P_{\mathbb{X},\mathbb{Y}}</math>. In this case, the only memory overhead of Solution 1 is the space required for <math>P_\mathbb{X}</math>. However, if some of the <math>P_{\mathbb{Y}|\mathbb{X}}</math> are not required then Solution 1 requires significantly more memory than Solution 2 (unless Solution 1 is modified to only compute the entries of <math>P_{\mathbb{X},\mathbb{Y}}</math> which are needed for the required <math>P_{\mathbb{Y}|\mathbb{X}}</math> conditionals). | ||
+ | |||
+ | --[[User:Jvaught|Jvaught]] 08:35, 2 February 2010 (UTC) | ||
+ | |||
+ | ---- | ||
+ | |||
+ | [[ECE662_topic2_discussions|Back to ECE662_topic2_discussions]] | ||
+ | |||
[[ 2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]] | [[ 2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]] |
Latest revision as of 03:35, 2 February 2010
Contents
Example of Turning Conditional Distributions Around
Let $ \mathbb{X} $ and $ \mathbb{Y} $ be jointly distributed discrete random variables with ranges $ X = \{0, 1, 2, 3, 4\} $ and $ Y = \{0, 1, 2\} $ respectively.
Suppose that the conditional distributions $ P_{\mathbb{X}|\mathbb{Y}} $ are empirically estimated as follows:
$ x $ | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=0) $ | .175 | .635 | .159 | .000 | .031 |
$ x $ | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=1) $ | .048 | .000 | .143 | .238 | .571 |
$ x $ | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=2) $ | .188 | .562 | .250 | .000 | .000 |
and the marginal $ P_{\mathbb{Y}} $ is empirically estimated as:
$ y $ | 0 | 1 | 2 |
---|---|---|---|
$ P_{\mathbb{Y}}(y) $ | .63 | .21 | .16 |
Estimate the conditional distributions $ P_{\mathbb{Y}|\mathbb{X}} $
Solution 1
By definition $ P_{\mathbb{X}|\mathbb{Y}}(x|y) = \frac{P_{\mathbb{X},\mathbb{Y}}(x,y)}{P_{\mathbb{Y}}(y)} $, so the joint distribution $ P_{\mathbb{X},\mathbb{Y}}(x,y) $ can be computed.
$ P_{\mathbb{X},\mathbb{Y}}(0,0) = P_{\mathbb{X}|\mathbb{Y}}(0|0)P_{\mathbb{Y}}(0) = .175 \cdot .63 = .11 $
Computing the rest of the distribution similarly:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | .11 | .40 | .10 | .00 | .02 |
1 | .01 | .00 | .03 | .05 | .12 |
2 | .03 | .09 | .04 | .00 | .00 |
The marginal distribution $ P_\mathbb{X} $ can be extracted from the joint distribution as:
$ P_\mathbb{X}(x) = \sum_{y\in Y} P_{\mathbb{X},\mathbb{Y}}(x,y) $
$ P_\mathbb{X}(0) = .11 + .01 + .03 = .15 $
Computing the rest of the distribution similarly:
$ x $ | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
$ P_{\mathbb{X}}(x) $ | .15 | .49 | .17 | .05 | .14 |
Finally $ P_{\mathbb{Y}|\mathbb{X}} $ can be computed by definition.
$ P_{\mathbb{Y}|\mathbb{X}}(0|0) = \frac{P_{\mathbb{X},\mathbb{Y}}(0,0)}{P_{\mathbb{X}}(0)} = \frac{.11}{.15} = .733 $
Computing the rest similarly:
$ y $ | 0 | 1 | 2 |
---|---|---|---|
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=0) $ | .733 | .067 | .200 |
$ y $ | 0 | 1 | 2 |
---|---|---|---|
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=1) $ | .816 | .000 | .184 |
$ y $ | 0 | 1 | 2 |
---|---|---|---|
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=2) $ | .588 | .176 | .236 |
$ y $ | 0 | 1 | 2 |
---|---|---|---|
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=3) $ | .000 | 1.00 | .000 |
$ y $ | 0 | 1 | 2 |
---|---|---|---|
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=4) $ | .143 | .857 | .000 |
Note from these $ P_{\mathbb{Y}|\mathbb{X}} $ distributions that for large $ x $ it is highly probable that $ y=1 $ and for small $ x $ it is highly probable that $ y=0 $.
--Jvaught 22:34, 29 January 2010 (UTC)
Solution 2
Or, equivalently, we can use Bayes' Rule explicity.
Bayes' Rule is:
$ P_{\mathbb{Y}|\mathbb{X}}(y|x) = \frac{P_{\mathbb{X}|\mathbb{Y}}(x|y)P_{\mathbb{Y}}(y)}{P_{\mathbb{X}}(x)} $
$ P_{\mathbb{X}}(x) $ can be computed using:
$ P_\mathbb{X}(x) = \sum_{y\in Y} P_{\mathbb{X}|\mathbb{Y}}(x|y)P_{\mathbb{Y}}(y) $
Thus, calculation of $ P_{\mathbb{Y}|\mathbb{X}}(Y=0|X=0) $ would proceed as follows:
$ P_{\mathbb{Y}|\mathbb{X}}(Y=0|X=0) = \frac{P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=0)P_{\mathbb{Y}}(Y=0)}{P_{\mathbb{X}}(X=0)} = \frac{P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=0)P_{\mathbb{Y}}(Y=0)}{\sum_{y\in Y} P_{\mathbb{X}|\mathbb{Y}}(X=0|Y=y)P_{\mathbb{Y}}(Y=y)} $
$ = \frac{0.175 \cdot 0.63}{0.175 \cdot 0.63 + 0.048 \cdot 0.21 + 0.188 \cdot 0.16} = \frac{.11025}{.15041} = 0.732996476 \approx 0.733 $
The rest of the conditional distribution can be computed similarly using Bayes' Rule and will result in the same answer as in Solution 1.
- This solution is nearly identical to Solution 1, differing only in that this solution does not contruct the joint probability mass function.
--Pritchey 14:38, 1 February 2010 (UTC)
Cost Trade-offs
The joint $ P_{\mathbb{X},\mathbb{Y}} $ and marginal $ P_\mathbb{X} $ are essentially common sub-expressions of Bayes' formula. Explicitly computing them once and reusing the result as in Solution 1 avoids redundant computations. However, if some of the conditionals $ P_{\mathbb{Y}|\mathbb{X}} $ are not required, Solution 2 avoids unnecessarily computing the entries of $ P_{\mathbb{X},\mathbb{Y}} $ and $ P_\mathbb{X} $ which won't be used. If all $ P_{\mathbb{Y}|\mathbb{X}} $ are required, then all entries of $ P_{\mathbb{X},\mathbb{Y}} $ and $ P_\mathbb{X} $ will be used.
In this example, Solution 1 requires 15 multiplies, 10 adds and 15 divides, whereas Solution 2 requires 60 multiplies, 30 adds, and 15 divides. However, suppose that only $ P_{\mathbb{Y}|\mathbb{X}}(Y|X=0) $ were required. Then Solution 1 would require 15 multiplies, 10 adds, and 3 divides, whereas Solution 2 would only require 12 multiplies, 6 adds, and 3 divides.
In terms of space, Solution 2 has no unnecessary overhead whereas Solution 1 has some. In some cases, the overhead for $ P_{\mathbb{X},\mathbb{Y}} $ can be avoided. Since each $ P_{\mathbb{Y}|\mathbb{X}} $ depends on exactly one entry of $ P_{\mathbb{X},\mathbb{Y}} $, if all $ P_{\mathbb{Y}|\mathbb{X}} $ are required the same memory which will hold $ P_{\mathbb{Y}|\mathbb{X}} $ can be temporarily used to hold $ P_{\mathbb{X},\mathbb{Y}} $. In this case, the only memory overhead of Solution 1 is the space required for $ P_\mathbb{X} $. However, if some of the $ P_{\mathbb{Y}|\mathbb{X}} $ are not required then Solution 1 requires significantly more memory than Solution 2 (unless Solution 1 is modified to only compute the entries of $ P_{\mathbb{X},\mathbb{Y}} $ which are needed for the required $ P_{\mathbb{Y}|\mathbb{X}} $ conditionals).
--Jvaught 08:35, 2 February 2010 (UTC)