(One intermediate revision by one other user not shown)
Line 11: Line 11:
  
 
-Do you have any information about #7 because we can't seem to get them congruent because we cannot compare angles between triangls, only within triangles
 
-Do you have any information about #7 because we can't seem to get them congruent because we cannot compare angles between triangls, only within triangles
 +
 +
** Ok, I'll be more specific. Take the midpoints of CB and FE. Call them P and Q, respectively. Construct lines MP and NQ. We know that CM=FN. We know that CP=FQ (because they're both one half of CB and FE respectively, which are given as equal). And theorem sixteen says that MP is 1/2 AC, and that NQ is 1/2 DF. But AC=DF is given, so therefore MP=NQ. Now CPM and FQN are congruent by SSS. Therefore angle MCB = angle NFE. Therefore MCB is congruent to NFE. Therefore MB=NE. Should be very obvious from there.
  
 
any hints for # 1?   
 
any hints for # 1?   
Line 17: Line 19:
  
 
Any suggestions for #3?
 
Any suggestions for #3?
 +
 +
Does anybody have suggestions for number 8?
  
 
[[ MA460 (Fall2009Walther) Homework|Back to MA460 (Fall2009Walther) Homework]]
 
[[ MA460 (Fall2009Walther) Homework|Back to MA460 (Fall2009Walther) Homework]]

Latest revision as of 04:13, 3 December 2009


HW 12

Does anyone know how to do 2, 3, 5, 7, or 8?

  • Here's what I did for problem two. Construct along EF a length equal to BC (prop 2), then construct an angle, at E, called MEF, such that angle MEF = angle ABC (prop 23). Then construct along segment EM a length EN equal to AB. Proposition four suggests triangles NEF and ABC are congruent, and from there the argument is more or less the same.
  • For number seven, think about theorem sixteen. That should tell you which extra line you're drawing in each triangle. Once you've done that, the solution should become pretty clear.

-Do you have any information about #7 because we can't seem to get them congruent because we cannot compare angles between triangls, only within triangles

    • Ok, I'll be more specific. Take the midpoints of CB and FE. Call them P and Q, respectively. Construct lines MP and NQ. We know that CM=FN. We know that CP=FQ (because they're both one half of CB and FE respectively, which are given as equal). And theorem sixteen says that MP is 1/2 AC, and that NQ is 1/2 DF. But AC=DF is given, so therefore MP=NQ. Now CPM and FQN are congruent by SSS. Therefore angle MCB = angle NFE. Therefore MCB is congruent to NFE. Therefore MB=NE. Should be very obvious from there.

any hints for # 1?

  • for number 1 I found three sets of similar triangles (DBI~FBI, FCI~ECI, EAI~DAI). Then when you set up the ratios you get three things equal to 1 (DB/FB, EA/DA, FC/EC). Then you can multiple those all together and change them to signed ratios.

Any suggestions for #3?

Does anybody have suggestions for number 8?

Back to MA460 (Fall2009Walther) Homework

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang