(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
{|
 +
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Discrete-time Fourier Transform Pairs and Properties
 +
|-
 +
! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse
 +
|-
 +
| align="right" style="padding-right: 1em;" | DT Fourier Transform || <math>\,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\,</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform || <math>\,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\,</math>
 +
|}
 +
{|
 +
|-
 +
! colspan="4" style="background: #eee;" | DT Fourier Transform Pairs
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math> x[n] \ </math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | DTFT of a complex exponential || <math>e^{jw_0n} \ </math> || || <math>\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | ([[DTFT_rectangular_window|info]]) DTFT of a rectangular window || <math>w[n]= \ </math> || || add formula here
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>a^{n} u[n],  |a|<1 \ </math> || ||<math>\frac{1}{1-ae^{-j\omega}} \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>\sin\left(\omega _0 n\right) u[n] \ </math>  || ||<math>\frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right)</math>
 +
|-
 +
|}
  
 +
{|
 +
|-
 +
! colspan="4" style="background: #eee;" | DT Fourier Transform Properties
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>x[n] \ </math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | multiplication property|| <math>x[n]y[n] \ </math> || || <math>\frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |  convolution property || <math>x[n]*y[n] \!</math> || ||<math> X(\omega)Y(\omega) \!</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | time reversal ||<math>\ x[-n] </math> || ||<math>\ X(-\omega)</math>
 +
|-
 +
|}
  
=DTFourierTransformCollectedfromECE301=
+
{|
 
+
|-
 
+
! colspan="2" style="background: #eee;" | Other DT Fourier Transform Properties
 
+
|-
Put your content here . . .
+
| align="right" style="padding-right: 1em;" | Parseval's relation  || <math>\frac {1}{N} \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = </math>
 
+
|}
 
+
----
 
+
[[Collective_Table_of_Formulas|Back to Collective Table]]
 
+
[[Category:Formulas]]
[[ MegaCollectiveTableTrial1|Back to MegaCollectiveTableTrial1]]
+

Latest revision as of 11:52, 22 October 2010

Discrete-time Fourier Transform Pairs and Properties
DT Fourier transform and its Inverse
DT Fourier Transform $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $
Inverse DT Fourier Transform $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $
DT Fourier Transform Pairs
$ x[n] \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) \ $
DTFT of a complex exponential $ e^{jw_0n} \ $ $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
(info) DTFT of a rectangular window $ w[n]= \ $ add formula here
$ a^{n} u[n], |a|<1 \ $ $ \frac{1}{1-ae^{-j\omega}} \ $
$ \sin\left(\omega _0 n\right) u[n] \ $ $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $
DT Fourier Transform Properties
$ x[n] \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) \ $
multiplication property $ x[n]y[n] \ $ $ \frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x[n]*y[n] \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x[-n] $ $ \ X(-\omega) $
Other DT Fourier Transform Properties
Parseval's relation $ \frac {1}{N} \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = $

Back to Collective Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn