(40 intermediate revisions by the same user not shown)
Line 1: Line 1:
                                                   Inverse Z-transform
+
                                                   '''Inverse Z-transform'''
  
<math>x[n]= \frac{1}{2\prod j} \oint_C X(z) z^{n-1} dz \ </math>
+
 
 +
By formula we have,
 +
 
 +
<math>x[n]= \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz \ </math>
  
 
           <math>= \sum_ {poles a_i of X(z) z^{n-1}} \ </math> Residue <math>X(z) z^{n-1} \ </math>
 
           <math>= \sum_ {poles a_i of X(z) z^{n-1}} \ </math> Residue <math>X(z) z^{n-1} \ </math>
Line 9: Line 12:
 
So inverting X(z) involves power series
 
So inverting X(z) involves power series
  
<math> f(x)= \sum_{n =-\infty}^{\infty} \frac {f^{n} x_0 (x-x_0)^{n}} {n!} \ </math>  
+
<math> f(x)= \sum_{n =0}^{\infty} \frac {f^{n} x_0 (x-x_0)^{n}} {n!} \ </math>  
 
   
 
   
<math>\frac{1}{1-x} = \sum_{n =-\infty}^{\infty} x^{n} \ </math>  , geometric series when |x|< 1
+
<math>\frac{1}{1-x} = \sum_{n =0}^{\infty} x^{n} \ </math>  , geometric series when |x|< 1
  
  
Shortcut to computing equivalent to complex integration formula's
+
Shortcut equivalent to complex integration formula's
  
 
1)  Write x(z) as a power series.
 
1)  Write x(z) as a power series.
  
<math>x(z)= \sum_{n =-\infty}^{\infty} \C_n z^n \ </math>        ,series must converge for all z's in the ROC of x(z)
+
<math>x(z)= \sum_{n =-\infty}^{\infty} C_n z^n \ </math>        ,series must converge for all z's in the ROC of x(z)
  
 
2) Observe that  
 
2) Observe that  
Line 28: Line 31:
 
<math>x(z) = \sum_{n =-\infty}^{\infty} x[-n] z^n \ </math>
 
<math>x(z) = \sum_{n =-\infty}^{\infty} x[-n] z^n \ </math>
  
3) By comparoson
+
3) By comparison
  
<math>x[-n]= \C_n \ </math>
+
<math>x[-n]= C_n \ </math>
  
 
or
 
or
  
<math>x[n]= \C_{-n} \ </math>
+
<math>x[n]= C_{-n} \ </math>
 +
 
 +
Example 1:      <math>x(z) = \frac{1}{1-z} \ </math>
 +
 
 +
Two possible ROC's
 +
Case 1:    |z|< 1
 +
 
 +
<math>x(z)= \sum_{n =0}^{\infty} z^n \ </math>    , by the formula of goemetric series
 +
 
 +
<math>= \sum_{k =-\infty}^{0} z^{-k} \ </math>
 +
 
 +
<math>= \sum_{k =-\infty}^{\infty} u[-k] z^{-k} \ </math>
 +
 
 +
So x[n]=u[-n]
 +
 
 +
Consistent of having inside of a circle as ROC.
 +
 
 +
 
 +
Case 2: |z|>1
 +
 
 +
<math>x(z)= \frac{1}{1-z} \ </math>
 +
 
 +
          <math>= \frac{1}{z (\frac{1}{z}-1)} \ </math>
 +
 
 +
          <math>= \frac {-1}{z} \frac{1}{1-\frac{1}{z}} \ </math>              , Observe <math>|\frac{1}{z}| < 1</math>
 +
 
 +
Now by using the geometric series formula, the series can be formed
 +
 
 +
              <math>= \frac {-1}{z} \sum_{n =0}^{\infty} ({\frac{1}{z}})^{n} </math>
 +
 
 +
              <math>=-\sum_{n =0}^{\infty} z^{-n-1} \ </math>
 +
 
 +
Let k=n+1
 +
 
 +
              <math>= -\sum_{k =1}^{\infty} z^{-k} </math>
 +
 
 +
              <math>= \sum_{k =-\infty}^{\infty}  -u[k-1] z^{-k} \ </math>
 +
 
 +
By comparison with the Z- transform formula we have,
 +
 
 +
x[n]= -u[n-1]
 +
 
 +
Consistent with having outside of circle as ROC.

Latest revision as of 08:50, 23 September 2009

                                                 Inverse Z-transform


By formula we have,

$ x[n]= \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz \ $

         $ = \sum_ {poles a_i of X(z) z^{n-1}} \  $ Residue $ X(z) z^{n-1} \  $
      
          $ = \sum_ {poles a_i of X(z) z^{n-1}} \  $ Coefficient of degree(-1) term  in the power expansion of $ X(z) z^{n-1} \  $ about $ a_i $

So inverting X(z) involves power series

$ f(x)= \sum_{n =0}^{\infty} \frac {f^{n} x_0 (x-x_0)^{n}} {n!} \ $

$ \frac{1}{1-x} = \sum_{n =0}^{\infty} x^{n} \ $ , geometric series when |x|< 1


Shortcut equivalent to complex integration formula's

1) Write x(z) as a power series.

$ x(z)= \sum_{n =-\infty}^{\infty} C_n z^n \ $ ,series must converge for all z's in the ROC of x(z)

2) Observe that

$ x(z) = \sum_{n =-\infty}^{\infty} x[n] z^{-n} \ $

i.e.,

$ x(z) = \sum_{n =-\infty}^{\infty} x[-n] z^n \ $

3) By comparison

$ x[-n]= C_n \ $

or

$ x[n]= C_{-n} \ $

Example 1: $ x(z) = \frac{1}{1-z} \ $

Two possible ROC's Case 1: |z|< 1

$ x(z)= \sum_{n =0}^{\infty} z^n \ $ , by the formula of goemetric series

$ = \sum_{k =-\infty}^{0} z^{-k} \ $

$ = \sum_{k =-\infty}^{\infty} u[-k] z^{-k} \ $

So x[n]=u[-n]

Consistent of having inside of a circle as ROC.


Case 2: |z|>1

$ x(z)= \frac{1}{1-z} \ $

         $ = \frac{1}{z (\frac{1}{z}-1)} \  $
         $ = \frac {-1}{z} \frac{1}{1-\frac{1}{z}} \  $               , Observe $ |\frac{1}{z}| < 1 $

Now by using the geometric series formula, the series can be formed

              $ = \frac {-1}{z} \sum_{n =0}^{\infty} ({\frac{1}{z}})^{n}  $
              $ =-\sum_{n =0}^{\infty} z^{-n-1} \  $

Let k=n+1

              $ = -\sum_{k =1}^{\infty} z^{-k}  $
              $ = \sum_{k =-\infty}^{\infty}  -u[k-1] z^{-k} \  $

By comparison with the Z- transform formula we have,

x[n]= -u[n-1]

Consistent with having outside of circle as ROC.

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin