(20 intermediate revisions by 2 users not shown)
Line 1: Line 1:
                                                  Inverse Z-transform
+
*<span style="color:green"> Hmm... This looks a lot like my course notes... Perhaps you want to write this somewhere, otherwise one might think that you are pretending that you wrote this yourself. --[[User:Mboutin|Mboutin]] 12:26, 23 September 2009 (UTC) </span>
  
  <math> x[n] = \oint_C {X(Z)} {Z ^ {n-1}} , dZ \ </math>
+
                                                '''Inverse Z-transform
 +
'''
 +
  <math> x[n] = \frac{1}{2 \prod j} \oint_C {X(z)} {z ^ {n-1}} dz \ </math>
 
  where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
 
  where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
  
             <math> = \sum_{poles  a_i ( X(ZZ ^ {n-1})}  Residue ( X(ZZ ^ {n-1}) \ </math>
+
             <math> = \sum_{poles  a_i ( X(zz ^ {n-1})}  Residue ( X(zz ^ {n-1}) \ </math>
             <math> = \sum_{poles  a_i ( X(ZZ ^ {n-1})} \ </math>  Coefficient of degree (-1) term on the power series expansion of <math> ( X(ZZ ^ {n-1}) \ </math>  <math> about a_i \ </math>
+
             <math> = \sum_{poles  a_i ( X(zz ^ {n-1})} \ </math>  Coefficient of degree (-1) term on the power series expansion of <math> ( X(zz ^ {n-1}) \ </math>  <math> about a_i \ </math>
  
  
So inverting X(Z) involves power series.  
+
So inverting X(z) involves power series.  
  
  
 
<math>f(X)= \sum_{n=0}^\infty \frac{f^n (X_0) (X-X_0)^{n}}{n!} \ </math> , near <math>X_0</math>
 
<math>f(X)= \sum_{n=0}^\infty \frac{f^n (X_0) (X-X_0)^{n}}{n!} \ </math> , near <math>X_0</math>
  
<math>\frac{1}{(1-x)} = \sum_{n=0}^\infty X^n \ </math> , geometric series where |X|=1
+
<math>\frac{1}{(1-x)} = \sum_{n=0}^\infty X^n \ </math> , geometric series where |X|< 1
  
  
Line 19: Line 21:
 
Computing equivalent to complex integration formula's
 
Computing equivalent to complex integration formula's
  
1) Write X(Z) as a power series.
+
1) Write X(z) as a power series.
  
<math>X(Z) = \sum_{n=-\infty}^{\infty} \ C_n Z^n \ </math>  , series must converge for all Z's on the ROC of X(Z)
+
<math>X(z) = \sum_{n=-\infty}^{\infty} \ C_n z^n \ </math>  , series must converge for all z's on the ROC of X(z)
  
 
2) Observe that  
 
2) Observe that  
  
<math>X(Z) = \sum_{n=-\infty}^{\infty} \ x[n] Z^{-n} \ </math>  
+
<math>X(z) = \sum_{n=-\infty}^{\infty} \ x[n] z^{-n} \ </math>  
  
 
i.e.,  
 
i.e.,  
  
<math>X(Z) = \sum_{n=-\infty}^{\infty} \ x[-n] Z^n \ </math>  
+
<math>X(z) = \sum_{n=-\infty}^{\infty} \ x[-n] z^n \ </math>  
  
 
3) By comparison
 
3) By comparison
Line 37: Line 39:
 
or  
 
or  
  
<math>X[n] = \ C_ -n</math>
+
<math>X[n] = \ C_ {-n}</math>
  
  
Line 63: Line 65:
 
<math>X(z) = \frac{1}{(1-z)} \ </math>
 
<math>X(z) = \frac{1}{(1-z)} \ </math>
 
     <math> = \frac{1}{z(\frac{1}{z}-1)} \ </math>
 
     <math> = \frac{1}{z(\frac{1}{z}-1)} \ </math>
 +
    <math>= \frac {-1}{z} {\frac{1}{1-\frac{1}{z}}} \ </math>    ,observe <math>\ |\frac {1}{z}|< 1 \ </math>
 +
 +
Now by using the geometric series formula, the series can be formed as
 +
 +
      <math>= \frac {-1}{z} \sum_{n=0}^\infty  (\frac {1}{z})^{n} \ </math>
 +
 +
      <math>= - \sum_{n=0}^\infty z^{-n-1} \ </math>
 +
 +
Let k=(n+1)
 +
 +
      <math>= - \sum_{k=1}^\infty z^{-k} \ </math>
 +
 +
      <math>= \sum_{k=1}^\infty -u(k-1) z^{-k} \ </math>
 +
 +
By coparison with the Z- transform formula
 +
 +
<math>x[n]= -u[n-1] \ </math>
 +
 +
Consistent as having outside of circle as the ROC.

Latest revision as of 07:27, 23 September 2009

  • Hmm... This looks a lot like my course notes... Perhaps you want to write this somewhere, otherwise one might think that you are pretending that you wrote this yourself. --Mboutin 12:26, 23 September 2009 (UTC)
                                               Inverse Z-transform

$  x[n] =  \frac{1}{2 \prod j} \oint_C {X(z)} {z ^ {n-1}} dz \  $
where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
            $  = \sum_{poles  a_i ( X(z)  z ^ {n-1})}  Residue ( X(z)  z ^ {n-1}) \  $
            $  = \sum_{poles  a_i ( X(z)  z ^ {n-1})} \  $  Coefficient of degree (-1) term on the power series expansion of $  ( X(z)  z ^ {n-1}) \  $  $  about a_i \  $


So inverting X(z) involves power series.


$ f(X)= \sum_{n=0}^\infty \frac{f^n (X_0) (X-X_0)^{n}}{n!} \ $ , near $ X_0 $

$ \frac{1}{(1-x)} = \sum_{n=0}^\infty X^n \ $ , geometric series where |X|< 1


Computing equivalent to complex integration formula's

1) Write X(z) as a power series.

$ X(z) = \sum_{n=-\infty}^{\infty} \ C_n z^n \ $ , series must converge for all z's on the ROC of X(z)

2) Observe that

$ X(z) = \sum_{n=-\infty}^{\infty} \ x[n] z^{-n} \ $

i.e.,

$ X(z) = \sum_{n=-\infty}^{\infty} \ x[-n] z^n \ $

3) By comparison

$ X[-n] = \ C_n \ $

or

$ X[n] = \ C_ {-n} $



Example 1:

$ X(z) = \frac{1}{(1-z)} \ $

Two possible ROC

Case 1: |z|<1

$ X(z) = \sum_{n=0}^\infty z^n \ $

   $   =  \sum_{k=-\infty}^{0} \ z^{-k} \  $
    $  =  \sum_{n=-\infty}^{\infty} \ u(-k) z^{-k} \  $

so, x[n]=u[-n]

Consistent as having inside a circle as ROC.

Case 2: |z|>1

$ X(z) = \frac{1}{(1-z)} \ $

   $  = \frac{1}{z(\frac{1}{z}-1)} \  $
    $ = \frac {-1}{z} {\frac{1}{1-\frac{1}{z}}} \  $    ,observe $ \ |\frac {1}{z}|< 1 \  $
Now by using the geometric series formula, the series can be formed as 
      $ = \frac {-1}{z} \sum_{n=0}^\infty  (\frac {1}{z})^{n} \  $
      $ = - \sum_{n=0}^\infty z^{-n-1} \  $

Let k=(n+1)

      $ = - \sum_{k=1}^\infty z^{-k} \  $
      $ = \sum_{k=1}^\infty -u(k-1) z^{-k} \  $

By coparison with the Z- transform formula

$ x[n]= -u[n-1] \ $

Consistent as having outside of circle as the ROC.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang