(6 intermediate revisions by the same user not shown)
Line 40: Line 40:
  
 
<math> = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x[n]e^{-j2\pi kn/N}</math>
 
<math> = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x[n]e^{-j2\pi kn/N}</math>
 +
 
Let m=n-lN
 
Let m=n-lN
 
  
 
<math> X(k2\pi /N) = \sum_{l=-\infty}^{\infty} \sum_{m=0}^{N-1} x[m+lN]e^{-j2\pi k(m+lN)/N}</math>
 
<math> X(k2\pi /N) = \sum_{l=-\infty}^{\infty} \sum_{m=0}^{N-1} x[m+lN]e^{-j2\pi k(m+lN)/N}</math>
Line 47: Line 47:
  
 
where <math>\sum_{m=0}^{N-1} x[m+lN]</math> is <math> Xp[n]</math>
 
where <math>\sum_{m=0}^{N-1} x[m+lN]</math> is <math> Xp[n]</math>
 +
 +
Note : if X[n] is finite duration N
 +
=> Xp[n] is the periodic repetation of X[n]
 +
 +
Nice thing is
 +
 +
Xp[n] can be recovered from the sampling <math> X(k2\pi /N)</math>
 +
 +
because
 +
 +
<math> X(k2\pi /N) = \sum_{n=0}^{N-1}Xp[n]e^{-j2\pi km/N}</math>
 +
 +
<math> \sum_{k=0}^{N-1}e^{j2\pi km/N}X(k2\pi /M)=\sum_{k=0}^{jw\pi km/N}\sum_{n=0}^{N-1}Xp[n]e^{-j2\pi km/N}</math>
 +
 +
<math>=\sum_{n=0}^{N-1}\sum_{k=0}^{N-1}Xp[n]e^{-j2\pi k(n-m)/N}</math>
 +
 +
<math>=\sum_{n=0}^{N-1}Xp[n]\sum_{k=0}^{N-1}(e^{-j2\pi (n-m)/N})^{k}</math>
 +
 +
<math>=\sum_{n=0}^{N-1}Xp[n]</math>
 +
 +
|  N, if n=m
 +
 +
|  <math>\frac{1-e^{-j2\pi(n-m)N/N}}{1-e{-jw\pi (n-m)/N}} = 0, else</math>
 +
 +
so, <math> Xp[n]= \frac{1}{N}\sum_{k=0}^{N-1}X(K2\pi /N)e^{j2\pi km/N}</math>
 +
 +
We write
 +
 +
<math> X[n] = X(k2\pi/N)</math>
 +
 +
<math>Xp[n]----DFT---->X[k]</math>
 +
 +
<math>Xp[n]<----IDFT----X[k]</math>
 +
 +
DFT properties
 +
 +
<math>X[n]=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j2\pi km/N}</math>
 +
 +
<math>X(k)=\sum_{k=0}^{N-1}X[n]e^{-j2\pi km/N}</math>
 +
 +
X(k)=Nak
 +
 +
DFT
 +
 +
same formula as for discrete fourier series.
 +
 +
  ==> same properties as DFT series.

Latest revision as of 22:03, 22 September 2009

Discrete Fourier Transform

definition

Let X[n] be a DT signal with period N

DFT

$ X [k] = \sum_{k=0}^{N-1} x[n]e^{-j2\pi kn/N} $

IDFT

$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k]e^{j2\pi kn/N} $


Derivation

Digital signals are 1) finite duration 2)discrete

want F.T. discrete and finite duration

Idea : discretize (ie. sample) the F.T.

$ X(w) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn}----sampling---> X(k2\pi /N) = \sum x[n]e^{-j2\pi nk/N} $

note : if X(w) band limited can reconstruct X(w) if N big enough.

Oberve :

$ X(k2\pi /N) = \sum_{n=0}^{N-1} x_{p}[n]e^{-j2\pi kn/N} $, where $ x_{p}[n] = \sum_{-\infty}^{\infty} x[n-lN] $ is periodic with N.

This is because

$ X(k2\pi /N) = \sum_{n =-\infty}^{\infty} x[n]e^{-j2\pi kn/N} $

$ = . . . + \sum_{n = -N}^{-1} x[n]e^{-j2\pi kn/N} + \sum_{n = 0}^{N-1} x[n]e^{-j2/pi kn/N}. . . $

$ = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x[n]e^{-j2\pi kn/N} $

Let m=n-lN

$ X(k2\pi /N) = \sum_{l=-\infty}^{\infty} \sum_{m=0}^{N-1} x[m+lN]e^{-j2\pi k(m+lN)/N} $ $ = \sum_{l=-\infty}^{\infty} \sum_{m=0}^{N-1} x[m+lN]e^{-j2\pi km/N} $

where $ \sum_{m=0}^{N-1} x[m+lN] $ is $ Xp[n] $

Note : if X[n] is finite duration N => Xp[n] is the periodic repetation of X[n]

Nice thing is

Xp[n] can be recovered from the sampling $ X(k2\pi /N) $

because

$ X(k2\pi /N) = \sum_{n=0}^{N-1}Xp[n]e^{-j2\pi km/N} $

$ \sum_{k=0}^{N-1}e^{j2\pi km/N}X(k2\pi /M)=\sum_{k=0}^{jw\pi km/N}\sum_{n=0}^{N-1}Xp[n]e^{-j2\pi km/N} $

$ =\sum_{n=0}^{N-1}\sum_{k=0}^{N-1}Xp[n]e^{-j2\pi k(n-m)/N} $

$ =\sum_{n=0}^{N-1}Xp[n]\sum_{k=0}^{N-1}(e^{-j2\pi (n-m)/N})^{k} $

$ =\sum_{n=0}^{N-1}Xp[n] $

| N, if n=m

| $ \frac{1-e^{-j2\pi(n-m)N/N}}{1-e{-jw\pi (n-m)/N}} = 0, else $

so, $ Xp[n]= \frac{1}{N}\sum_{k=0}^{N-1}X(K2\pi /N)e^{j2\pi km/N} $

We write

$ X[n] = X(k2\pi/N) $

$ Xp[n]----DFT---->X[k] $

$ Xp[n]<----IDFT----X[k] $

DFT properties

$ X[n]=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j2\pi km/N} $

$ X(k)=\sum_{k=0}^{N-1}X[n]e^{-j2\pi km/N} $

X(k)=Nak

DFT

same formula as for discrete fourier series.

 ==> same properties as DFT series.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett