(Removing all content from page)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
  
==Scaling of the Dirac Delta (Impulse Function)==
 
<math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0</math>
 
 
==Mini Proof==
 
 
<math>\int_{-\infty}^{\infty}\delta(x)dx = 1</math>
 
 
<math>\displaystyle Let\;\;\;y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha}</math>               
 
 
<math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math>
 
 
==Hence,==
 
 
<math>\displaystyle\delta(\omega)=\delta(2\pi f)=\frac{1}{2\pi}\delta(f)</math>
 
 
==Which also means that..==
 
 
<math>P_T(f)=\frac{1}{T_s}\sum_{n=-\infty}^{\infty}\delta(f-\frac{n}{T_s})</math>
 
 
<math>P_T(\omega)\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty}\delta(w-n\frac{2\pi}{T_s})</math>
 

Latest revision as of 08:06, 20 September 2009

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett