(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:ECE438]]
 +
[[Category:signal processing]]
 +
[[Category:z-transform]]
 +
[[Category:inverse z-transform]]
 +
 
===The Z-Transform===
 
===The Z-Transform===
  
Line 39: Line 44:
  
 
A series <math> \sum_{n=-\infty}^\infty (An) </math> is said to absolutely converge if <math> \sum_{n=-\infty}^\infty |(An)| </math> converges
 
A series <math> \sum_{n=-\infty}^\infty (An) </math> is said to absolutely converge if <math> \sum_{n=-\infty}^\infty |(An)| </math> converges
 
The R.O.C. (Region of convergence, absolute convergence in this case) is the set of points in the complex plane for which the summation of the Z-Transform converges.
 
  
 
For example:
 
For example:
  
<math> X(z)=\sum{n=-\infty}^\infty x[n]z^{-n} </math> converges if the absolute value <math> |x[n]z^{-n}| < 1 </math>.  
+
<math> X(z)=\sum_{n=-\infty}^\infty x[n]z^{-n} </math> converges if the absolute value <math> |x[n]z^{-n}| < 1 </math>.  
  
 
But the norm of <math> |z^{-n}| = 1 </math>, so the series converges if <math> |x[n]| < 1 </math>.
 
But the norm of <math> |z^{-n}| = 1 </math>, so the series converges if <math> |x[n]| < 1 </math>.
 +
 +
==R.O.C.==
 +
 +
The R.O.C. (Region of convergence, absolute convergence in this case) is the set of points in the complex plane for which the summation of the Z-Transform converges.
 +
----
 +
[[ECE438_%28BoutinFall2009%29|Back to ECE438 Fall 2009]]

Latest revision as of 05:55, 16 September 2013


The Z-Transform

The z-transform converts a discrete-time signal into a complex frequency domain representation.

  • $ X(z) = \sum_{n=-\infty}^\infty (x[n]z^{-n}) $

Some Properties:

Linearity:

  • $ ax1[n]+bx2[n] = aX1(z)+bX2(z) $

Time-Shifting:

  • $ x[n-k] = z^{-k}X(z) $

Scaling in Z domain:

  • $ a^{n}Y(z) = X(a^{-1}Z) $

Time Reversal:

  • $ x[-n] = X(z^{-1}) $

Convolution:

  • $ x1[n]* x2[n] = X1(z)X2(z) $


Inverse Z-Transform

Returns a complex variable representation back into a discrete-time signal.

  • $ x[n] = Z^{-1}[X(z)] = \int X(z)z^{n-1}\ $

in this case the integral is around a counter-clockwise clothed path encircling the origin of the complex plane and entirely inside the R.O.C.

Absolute Convergence

A series $ \sum_{n=-\infty}^\infty (An) $ is said to absolutely converge if $ \sum_{n=-\infty}^\infty |(An)| $ converges

For example:

$ X(z)=\sum_{n=-\infty}^\infty x[n]z^{-n} $ converges if the absolute value $ |x[n]z^{-n}| < 1 $.

But the norm of $ |z^{-n}| = 1 $, so the series converges if $ |x[n]| < 1 $.

R.O.C.

The R.O.C. (Region of convergence, absolute convergence in this case) is the set of points in the complex plane for which the summation of the Z-Transform converges.


Back to ECE438 Fall 2009

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch