(7 intermediate revisions by one other user not shown)
Line 1: Line 1:
The Z-Transform
+
[[Category:ECE438]]
 +
[[Category:signal processing]]
 +
[[Category:z-transform]]
 +
[[Category:inverse z-transform]]
 +
 
 +
===The Z-Transform===
  
 
The z-transform converts a discrete-time signal into a complex frequency domain representation.
 
The z-transform converts a discrete-time signal into a complex frequency domain representation.
  
* <math>X(z) = \sum{x[n]*z^{-n}}</math>
+
* <math> X(z) = \sum_{n=-\infty}^\infty (x[n]z^{-n}) </math>
 +
 
 +
Some Properties:
 +
 
 +
Linearity:
 +
 
 +
* <math> ax1[n]+bx2[n] = aX1(z)+bX2(z) </math>
 +
 
 +
Time-Shifting:
 +
 
 +
* <math> x[n-k] = z^{-k}X(z) </math>
 +
 
 +
Scaling in Z domain:
 +
 
 +
* <math> a^{n}Y(z) = X(a^{-1}Z) </math>
 +
 
 +
Time Reversal:
 +
 
 +
* <math> x[-n] = X(z^{-1}) </math>
 +
 
 +
Convolution:
 +
 
 +
* <math> x1[n]* x2[n] = X1(z)X2(z) </math>
 +
 
 +
 
 +
===Inverse Z-Transform===
 +
 
 +
Returns a complex variable representation back into a discrete-time signal.
 +
 
 +
* <math> x[n] = Z^{-1}[X(z)] = \int X(z)z^{n-1}\ </math>
 +
 
 +
in this case the integral is around a counter-clockwise clothed path encircling the origin of the complex plane and entirely inside the R.O.C.
 +
 
 +
===Absolute Convergence===
 +
 
 +
A series <math> \sum_{n=-\infty}^\infty (An) </math> is said to absolutely converge if <math> \sum_{n=-\infty}^\infty |(An)| </math> converges
 +
 
 +
For example:
 +
 
 +
<math> X(z)=\sum_{n=-\infty}^\infty x[n]z^{-n} </math> converges if the absolute value <math> |x[n]z^{-n}| < 1 </math>.
 +
 
 +
But the norm of <math> |z^{-n}| = 1 </math>, so the series converges if <math> |x[n]| < 1 </math>.
 +
 
 +
==R.O.C.==
 +
 
 +
The R.O.C. (Region of convergence, absolute convergence in this case) is the set of points in the complex plane for which the summation of the Z-Transform converges.
 +
----
 +
[[ECE438_%28BoutinFall2009%29|Back to ECE438 Fall 2009]]

Latest revision as of 05:55, 16 September 2013


The Z-Transform

The z-transform converts a discrete-time signal into a complex frequency domain representation.

  • $ X(z) = \sum_{n=-\infty}^\infty (x[n]z^{-n}) $

Some Properties:

Linearity:

  • $ ax1[n]+bx2[n] = aX1(z)+bX2(z) $

Time-Shifting:

  • $ x[n-k] = z^{-k}X(z) $

Scaling in Z domain:

  • $ a^{n}Y(z) = X(a^{-1}Z) $

Time Reversal:

  • $ x[-n] = X(z^{-1}) $

Convolution:

  • $ x1[n]* x2[n] = X1(z)X2(z) $


Inverse Z-Transform

Returns a complex variable representation back into a discrete-time signal.

  • $ x[n] = Z^{-1}[X(z)] = \int X(z)z^{n-1}\ $

in this case the integral is around a counter-clockwise clothed path encircling the origin of the complex plane and entirely inside the R.O.C.

Absolute Convergence

A series $ \sum_{n=-\infty}^\infty (An) $ is said to absolutely converge if $ \sum_{n=-\infty}^\infty |(An)| $ converges

For example:

$ X(z)=\sum_{n=-\infty}^\infty x[n]z^{-n} $ converges if the absolute value $ |x[n]z^{-n}| < 1 $.

But the norm of $ |z^{-n}| = 1 $, so the series converges if $ |x[n]| < 1 $.

R.O.C.

The R.O.C. (Region of convergence, absolute convergence in this case) is the set of points in the complex plane for which the summation of the Z-Transform converges.


Back to ECE438 Fall 2009

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison