Line 6: Line 6:
 
       w(t)=y(t)<math>cosw_c</math>t  
 
       w(t)=y(t)<math>cosw_c</math>t  
 
           =x(t)<math>cos^2 w_c</math>t
 
           =x(t)<math>cos^2 w_c</math>t
 +
  Use the trig identity 
 +
      <math>cos^2 w_c</math>t=(1/2)+(1/2)<math>2cosw_c</math>t
 +
  We can rewrite as
 +
      w(t)=(1/2)x(t)=(1/2)x(t)<math>2cosw_c</math>t
 +
  In this process the demodulating signal is assumed to be synchronized in phase with the modulating signal.

Latest revision as of 17:18, 29 July 2009

Synchronous Demodulation ->

  Assume that $ w_c > w_m  $ and consider the signal: 
     y(t)=x(t)$ cosw_c t $  
  The original signal can be recovered by modulating y(t) with the same sinusoidal carrier and applying a low pass filter to the 
  result.  
     w(t)=y(t)$ cosw_c $t 
         =x(t)$ cos^2 w_c $t
  Use the trig identity   
     $ cos^2 w_c $t=(1/2)+(1/2)$ 2cosw_c $t 
  We can rewrite as 
     w(t)=(1/2)x(t)=(1/2)x(t)$ 2cosw_c $t 
  In this process the demodulating signal is assumed to be synchronized in phase with the modulating signal.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva