(New page: Suppose <math>f \in L^{1}(\mathbb{R})</math> satisfies <math>f*f=f</math>. Show that <math>f=0</math>. ---- <math>\hat{f} = \widehat{f*f} = \hat{f}^2</math> by problem 2. Now <math>(\ha...) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:MA598RSummer2009pweigel]] | ||
+ | [[Category:MA598]] | ||
+ | [[Category:math]] | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:real analysis]] | ||
+ | |||
+ | == Problem #7.6, MA598R, Summer 2009, Weigel == | ||
+ | Sneak through the inky black night back to [[The_Ninja%27s_Solutions]] | ||
+ | |||
Suppose <math>f \in L^{1}(\mathbb{R})</math> satisfies <math>f*f=f</math>. Show that <math>f=0</math>. | Suppose <math>f \in L^{1}(\mathbb{R})</math> satisfies <math>f*f=f</math>. Show that <math>f=0</math>. | ||
Line 14: | Line 23: | ||
~Ben Bartle | ~Ben Bartle | ||
+ | ---- | ||
+ | [[The_Ninja%27s_Solutions|Back to Ninja Solutions]] | ||
+ | |||
+ | [[MA_598R_pweigel_Summer_2009_Lecture_7|Back to Assignment 7]] | ||
+ | |||
+ | [[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]] |
Latest revision as of 04:53, 11 June 2013
Problem #7.6, MA598R, Summer 2009, Weigel
Sneak through the inky black night back to The_Ninja's_Solutions
Suppose $ f \in L^{1}(\mathbb{R}) $ satisfies $ f*f=f $. Show that $ f=0 $.
$ \hat{f} = \widehat{f*f} = \hat{f}^2 $ by problem 2.
Now $ (\hat{f}(\xi))(\hat{f}(\xi)-1)=0 $ so $ \hat{f} = \chi_{A} $ for some set $ A $
But problem 5 gives $ \hat{f} $ is continuous and the limit is zero, hence $ \hat{f}\equiv 0 $
Applying an inverse fourier transfom gives $ f = 0 $ a.e.
$ f = f*f = \int_{\mathbb{R}} f(x-y)f(y)dy = 0 $ because the integral of something that is zero a.e. is zero.
~Ben Bartle