(New page: <math>\text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r.</math> <math>\text{Proof: Let } \mathcal{C} \text{ denote the Can...)
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
[[Category:MA598RSummer2009pweigel]]
 +
[[Category:MA598]]
 +
[[Category:math]]
 +
[[Category:problem solving]]
 +
[[Category:real analysis]]
 +
 +
=Solution for HW2.17, MA598, Weigel, Summer 2009=
 +
 
<math>\text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r.</math>
 
<math>\text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r.</math>
 
<math>\text{Proof: Let } \mathcal{C} \text{ denote the Cantor set.  Define } f: </math> <math> \mathcal{C} \times \mathcal{C} \rightarrow [0,1] \text{ by } (x,y) </math> <math> \mapsto \frac{x+y}{2}. </math>  
 
<math>\text{Proof: Let } \mathcal{C} \text{ denote the Cantor set.  Define } f: </math> <math> \mathcal{C} \times \mathcal{C} \rightarrow [0,1] \text{ by } (x,y) </math> <math> \mapsto \frac{x+y}{2}. </math>  
Line 4: Line 12:
 
<math>\exists x, y \in \mathcal{C} \text{ s.t. } r+1 = x+y \Rightarrow r=x-(1-y).  </math>
 
<math>\exists x, y \in \mathcal{C} \text{ s.t. } r+1 = x+y \Rightarrow r=x-(1-y).  </math>
 
<math>\text{  Since } 1-y \in \mathcal{C} \text{ by symmetry, } \square. </math>
 
<math>\text{  Since } 1-y \in \mathcal{C} \text{ by symmetry, } \square. </math>
 +
----
 +
----
 +
[[MA_598R_pweigel_Summer_2009_Lecture_2|Back to Assignment 2, MA598, Summer 2009, Weigel]]
 +
 +
[[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]]

Latest revision as of 04:49, 11 June 2013


Solution for HW2.17, MA598, Weigel, Summer 2009

$ \text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r. $ $ \text{Proof: Let } \mathcal{C} \text{ denote the Cantor set. Define } f: $ $ \mathcal{C} \times \mathcal{C} \rightarrow [0,1] \text{ by } (x,y) $ $ \mapsto \frac{x+y}{2}. $ $ \text{ Now f is clearly onto by examining the ternary representation of an element of } [0,1]. \text{ Given } r \in [-1,1], \frac{r+1}{2} \in [0,1] \Rightarrow $ $ \exists x, y \in \mathcal{C} \text{ s.t. } r+1 = x+y \Rightarrow r=x-(1-y). $ $ \text{ Since } 1-y \in \mathcal{C} \text{ by symmetry, } \square. $



Back to Assignment 2, MA598, Summer 2009, Weigel

Back to MA598R Summer 2009

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang