(Other Topics)
 
(35 intermediate revisions by 12 users not shown)
Line 8: Line 8:
 
Lecture: M T W Th F 9:50 am - 10:50 am @ EE 117
 
Lecture: M T W Th F 9:50 am - 10:50 am @ EE 117
  
Office Hours: W 11:00 am - 12:00 am
+
Office Hours: M W 11:00 am - 12:00 am
 +
 
 +
Email : asan@purdue.edu
  
 
== Main Topics of the Course ==
 
== Main Topics of the Course ==
Line 25: Line 27:
 
##[[Continuous-Time and Discrete-Time_OldKiwi]]
 
##[[Continuous-Time and Discrete-Time_OldKiwi]]
 
##[[Basic System Properties_OldKiwi]]
 
##[[Basic System Properties_OldKiwi]]
 +
#Lecture 5
 +
##[[DT LTI systems: The convolution sum_OldKiwi]]
 +
#Lecture 6
 +
##[[CT LTI systems: The convolution integral_OldKiwi]]
 +
#Lecture 7
 +
##[[Properties of LTI systems_OldKiwi]]
 +
##[[Unit step response of an LTI system_OldKiwi]]
 +
#Lecture 8
 +
##[[LTI systems described by differential equations(CT) and difference equation(DT)_OldKiwi]]
 +
##[[Response of LTI systems to complex exponentials_OldKiwi]]
 +
#Lecture 9
 +
##[[Response of LTI systems to complex exponentials_OldKiwi]]
 +
##[[Fourier Series representation of continuous-time periodic signals_OldKiwi]]
 +
#Lecture 10
 +
##[[Fourier Series Representation of CT periodic signals_OldKiwi]]
 +
##[[Properties of CT Fourier Series_OldKiwi]]
 +
#Lecture 11
 +
##[[Fourier Series Representation of CT periodic signals using properties_OldKiwi]]
 +
##[[Fourier Series Representation of DT periodic signals_OldKiwi]]
 +
#Lecture 12
 +
##[[Properties of discrete time Fourier Series_OldKiwi]]
 +
##[[Fourier Series and LTI Systems_OldKiwi]]
 +
#Lecture 13
 +
##[[CT Fourier Transform_OldKiwi]]
 +
#Lecture 14
 +
##[[Convergence of Fourier Transform_OldKiwi]]
 +
##[[Fourier Transform of periodic signals_OldKiwi]]
 +
##[[Properties of Continuous Fourier Transforms_OldKiwi]]
 +
#Lecture 15
 +
##[[Applications of Convolution Property_OldKiwi]]
 +
##[[Applications of Multiplication Property_OldKiwi]]
 +
##[[Frequency selective filtering_OldKiwi]]
 +
#Lecture 16
 +
##[[Frequency selective filtering_OldKiwi]]
 +
##[[CT LTI systems charachterized by LCCDE_OldKiwi]]
 +
#Lecture 17
 +
##[[Communication Systems_OldKiwi]]
 +
##[[  Complex Exponential And Sinusoidal_OldKiwi]]
 +
##[[          Amplitude Modulation (AM_OldKiwi]]
 +
##[[  Demodulation for AM_OldKiwi]]
 +
#Lecture 18
 +
##[[Frequency Division Multiplextion (FDM)_OldKiwi]]
 +
##[[Single-Sideband Sinusoidal AM_OldKiwi]]
 +
##[[AM with a pluse-train carrier_OldKiwi]]
 +
#Lecture 19
 +
##[[ Discrete-time Fourir Transform_OldKiwi]]
 +
##[[DTFT for periodic signals_OldKiwi]]
 +
##[[Properties of DTFT_OldKiwi]]
 +
#Lecture 20
 +
##[[Tables 5.1 and 5.2_OldKiwi]]
 +
##[[LTI systems characterized by LCCDEs_OldKiwi]]
 +
#Lecture 21
 +
##[[Duality_OldKiwi]]
 +
##[[  CTFT_OldKiwi]]
 +
##[[  DTFS_OldKiwi]]
 +
##[[  CRFS & DTFT_OldKiwi]]
 +
#Lecture 22
 +
##[[Sampling_OldKiwi]]
 +
##[[Representation of a CT signalby its samples:_OldKiwi]]
 +
##[[  The Sampling Theorem_OldKiwi]]
  
 
== Homework Problems ==
 
== Homework Problems ==
  
#[[Homework 1_OldKiwi]]
+
#[[Homework 1 - Summer 08_OldKiwi]]
#[[Homework 2_OldKiwi]]
+
#[[Homework 2 - Summer 08_OldKiwi]]
 +
#[[Homework 3 - Summer 08_OldKiwi]]
 +
#[[Homework 4 - Missing 3.28 & 4.4b_OldKiwi]]
 +
#[[Homework 4 - 4.4b_OldKiwi]]
 +
#[[Homework 5 - Missing 4.45, 4.46 & 4.49_OldKiwi]]
 +
#[[Homework 5 - Missing First three and last one_OldKiwi]]
 +
#[[Homework 6 - Don't know 5.8_OldKiwi]]
 +
 
 +
== Exams ==
 +
 
 +
#[[Exam 1 - Summer 08_OldKiwi]]
 +
#[[ECE301:SanSummer08:Exam II_OldKiwi]]
 +
 
 +
== Bonus Problems ==
 +
 
 +
#[[Bonus 2 - Summer 08_OldKiwi]]
 +
#[[Bonus 3 - Exam I_OldKiwi]]
 +
#[[Bonus 5 - Exam I_OldKiwi]]
 +
#[[Bonus 6 - Convolution Proofs_OldKiwi]]
 +
#[[Bonus 12 - Exam II_OldKiwi]]
 +
#[[Bonus 12 scores_OldKiwi]]
 +
 
 +
==Other Topics==
 +
Add other relevent/interesting pages here:
 +
 
 +
You can use latex in Kiwi, here is a
 +
[http://www.stdout.org/~winston/latex/ Latex Cheat Sheet]
 +
 
 +
[[Category:ECE 301 San Summer 2008]]
 +
 
 +
#[[Practice Problems - Exam 1_OldKiwi]]
 +
#[[Exam 1 Formula's_OldKiwi]]
 +
#[[Practice Midterm 2 - Aung Kyi San Summer 2005 Solutions_OldKiwi]]

Latest revision as of 10:32, 25 July 2008

General Course Information

ECE 301

Summer 2008

Instructor: Aung Kyi San

Lecture: M T W Th F 9:50 am - 10:50 am @ EE 117

Office Hours: M W 11:00 am - 12:00 am

Email : asan@purdue.edu

Main Topics of the Course

  1. Lecture 1
    1. Signal Energy and Power_OldKiwi
    2. Transformation of the independent variable_OldKiwi
  2. Lecture 2
    1. Periodic Signals_OldKiwi
    2. Even and Odd Signals_OldKiwi
    3. Exponential and Sinusoidal signals (CT)_OldKiwi
  3. Lecture 3
    1. Exponential and Sinusoidal signals (DT)_OldKiwi
    2. The unit impulse and unit step functions_OldKiwi
  4. Lecture 4
    1. Continuous-Time and Discrete-Time_OldKiwi
    2. Basic System Properties_OldKiwi
  5. Lecture 5
    1. DT LTI systems: The convolution sum_OldKiwi
  6. Lecture 6
    1. CT LTI systems: The convolution integral_OldKiwi
  7. Lecture 7
    1. Properties of LTI systems_OldKiwi
    2. Unit step response of an LTI system_OldKiwi
  8. Lecture 8
    1. LTI systems described by differential equations(CT) and difference equation(DT)_OldKiwi
    2. Response of LTI systems to complex exponentials_OldKiwi
  9. Lecture 9
    1. Response of LTI systems to complex exponentials_OldKiwi
    2. Fourier Series representation of continuous-time periodic signals_OldKiwi
  10. Lecture 10
    1. Fourier Series Representation of CT periodic signals_OldKiwi
    2. Properties of CT Fourier Series_OldKiwi
  11. Lecture 11
    1. Fourier Series Representation of CT periodic signals using properties_OldKiwi
    2. Fourier Series Representation of DT periodic signals_OldKiwi
  12. Lecture 12
    1. Properties of discrete time Fourier Series_OldKiwi
    2. Fourier Series and LTI Systems_OldKiwi
  13. Lecture 13
    1. CT Fourier Transform_OldKiwi
  14. Lecture 14
    1. Convergence of Fourier Transform_OldKiwi
    2. Fourier Transform of periodic signals_OldKiwi
    3. Properties of Continuous Fourier Transforms_OldKiwi
  15. Lecture 15
    1. Applications of Convolution Property_OldKiwi
    2. Applications of Multiplication Property_OldKiwi
    3. Frequency selective filtering_OldKiwi
  16. Lecture 16
    1. Frequency selective filtering_OldKiwi
    2. CT LTI systems charachterized by LCCDE_OldKiwi
  17. Lecture 17
    1. Communication Systems_OldKiwi
    2. Complex Exponential And Sinusoidal_OldKiwi
    3. Amplitude Modulation (AM_OldKiwi
    4. Demodulation for AM_OldKiwi
  18. Lecture 18
    1. Frequency Division Multiplextion (FDM)_OldKiwi
    2. Single-Sideband Sinusoidal AM_OldKiwi
    3. AM with a pluse-train carrier_OldKiwi
  19. Lecture 19
    1. Discrete-time Fourir Transform_OldKiwi
    2. DTFT for periodic signals_OldKiwi
    3. Properties of DTFT_OldKiwi
  20. Lecture 20
    1. Tables 5.1 and 5.2_OldKiwi
    2. LTI systems characterized by LCCDEs_OldKiwi
  21. Lecture 21
    1. Duality_OldKiwi
    2. CTFT_OldKiwi
    3. DTFS_OldKiwi
    4. CRFS & DTFT_OldKiwi
  22. Lecture 22
    1. Sampling_OldKiwi
    2. Representation of a CT signalby its samples:_OldKiwi
    3. The Sampling Theorem_OldKiwi

Homework Problems

  1. Homework 1 - Summer 08_OldKiwi
  2. Homework 2 - Summer 08_OldKiwi
  3. Homework 3 - Summer 08_OldKiwi
  4. Homework 4 - Missing 3.28 & 4.4b_OldKiwi
  5. Homework 4 - 4.4b_OldKiwi
  6. Homework 5 - Missing 4.45, 4.46 & 4.49_OldKiwi
  7. Homework 5 - Missing First three and last one_OldKiwi
  8. Homework 6 - Don't know 5.8_OldKiwi

Exams

  1. Exam 1 - Summer 08_OldKiwi
  2. ECE301:SanSummer08:Exam II_OldKiwi

Bonus Problems

  1. Bonus 2 - Summer 08_OldKiwi
  2. Bonus 3 - Exam I_OldKiwi
  3. Bonus 5 - Exam I_OldKiwi
  4. Bonus 6 - Convolution Proofs_OldKiwi
  5. Bonus 12 - Exam II_OldKiwi
  6. Bonus 12 scores_OldKiwi

Other Topics

Add other relevent/interesting pages here:

You can use latex in Kiwi, here is a Latex Cheat Sheet

  1. Practice Problems - Exam 1_OldKiwi
  2. Exam 1 Formula's_OldKiwi
  3. Practice Midterm 2 - Aung Kyi San Summer 2005 Solutions_OldKiwi

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett