(New page: a) g(x)+h(x)=0 g(x) even h(x) odd g is both even and odd g(x)=g(-x)=-g(x) b) f(x)=f$_{e}$(x)+f$_{0}$(x) f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x) solve for f$_{e}$(x) and f$_{0}$...)
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
a)
 
a)
g(x)+h(x)=0
+
 
g(x) even h(x) odd
+
<math>g(x)+h(x)=0</math>
 +
 
 +
<math>g(x)</math> even <math>h(x)</math> odd
 +
 
 
g is both even and odd
 
g is both even and odd
g(x)=g(-x)=-g(x)
+
 
 +
<math>g(x)=g(-x)=-g(x)</math>
 +
 
 
b)
 
b)
f(x)=f$_{e}$(x)+f$_{0}$(x)
+
 
f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x)
+
<math>f(x)=f_{e}(x)+f_{0}(x)</math>
solve for f$_{e}$(x) and f$_{0}$(x)
+
 
f$_{e}$(x)= (f(x)+f(-x))/2
+
<math>f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x)</math>
f$_{0}$(x)= (f(x)-f(-x))/2
+
 
 +
solve for <math>f_{e}(x)</math> and <math>f_{0}(x)</math>
 +
 
 +
<math>f_{e}(x)= (f(x)+f(-x))/2</math>
 +
 
 +
<math>f_{0}(x)= (f(x)-f(-x))/2</math>

Latest revision as of 07:43, 6 October 2008

a)

$ g(x)+h(x)=0 $

$ g(x) $ even $ h(x) $ odd

g is both even and odd

$ g(x)=g(-x)=-g(x) $

b)

$ f(x)=f_{e}(x)+f_{0}(x) $

$ f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x) $

solve for $ f_{e}(x) $ and $ f_{0}(x) $

$ f_{e}(x)= (f(x)+f(-x))/2 $

$ f_{0}(x)= (f(x)-f(-x))/2 $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal