(Moved over from old Kiwi)
 
 
Line 1: Line 1:
 +
[[Category:ECE662]]
 +
[[Category:decision theory]]
 +
[[Category:pattern recognition]]
 +
[[Category:maximum likelihood estimation]]
 +
 +
=Maximum Likelihood Estimation (MLE) example: Exponential and Geometric Distributions=
 +
Link to other examples: [[MLE_Examples:_Binomial_and_Poisson_Distributions_OldKiwi|Binomial and Poisson distributions]]
 +
----
 +
 
'''Exponential Distribution'''
 
'''Exponential Distribution'''
  
Line 59: Line 68:
  
 
This agrees with the intuition because, in n observations of a geometric random variable, there are n successes in the <math>\sum_{1}^{n}{X}_{i}</math> trials. Thus the estimate of p is the number of successes divided by the total number of trials.
 
This agrees with the intuition because, in n observations of a geometric random variable, there are n successes in the <math>\sum_{1}^{n}{X}_{i}</math> trials. Thus the estimate of p is the number of successes divided by the total number of trials.
 +
----
 +
[[ECE662|Back to ECE662]]

Latest revision as of 09:00, 23 April 2012


Maximum Likelihood Estimation (MLE) example: Exponential and Geometric Distributions

Link to other examples: Binomial and Poisson distributions


Exponential Distribution

Let $ {X}_{1}, {X}_{2}, {X}_{3}.....{X}_{n} $ be a random sample from the exponential distribution with p.d.f.

$ f(x;\theta)=\frac{1}{\theta}{e}^{\frac{-x}{\theta}} 0<x<\infty, \theta\in\Omega=\{\theta|0<\theta<\infty\} $

The likelihood function is given by:

$ L(\theta)=L\left(\theta;{x}_{1},{x}_{2}...{x}_{n} \right)=\left(\frac{1}{\theta}{e}^{\frac{{-x}_{1}}{\theta}}\right)\left(\frac{1}{\theta}{e}^{\frac{{-x}_{2}}{\theta}}\right)...\left(\frac{1}{\theta}{e}^{\frac{{-x}_{n}}{\theta}} \right)=\frac{1}{{\theta}^{n}}exp\left(\frac{-\sum_{1}^{n}{x}_{i}}{\theta} \right) $

Taking log, we get,

$ lnL\left(\theta\right)=-\left(n \right)ln\left(\theta\right) -\frac{1}{\theta}\sum_{1}^{n}{x}_{i}, 0<\theta<\infty $

Differentiating the above expression, and equating to zero, we get

$ \frac{d\left[lnL\left(\theta\right) \right]}{d\theta}=\frac{-\left(n \right)}{\left(\theta\right)} +\frac{1}{{\theta}^{2}}\sum_{1}^{n}{x}_{i}=0 $

The solution of equation for $ \theta $ is:

$ \theta=\frac{\sum_{1}^{n}{x}_{i}}{n} $

Thus, the maximum likelihood estimator of $ \Theta $ is

$ \Theta=\frac{\sum_{1}^{n}{X}_{i}}{n} $


Geometric Distribution

Let $ {X}_{1}, {X}_{2}, {X}_{3}.....{X}_{n} $ be a random sample from the geometric distribution with p.d.f.

$ f\left(x;p \right)={\left(1-p \right)}^{x-1}p, x=1,2,3.... $

The likelihood function is given by:

$ L\left(p \right)={\left(1-p \right)}^{{x}_{1}-1}p {\left(1-p \right)}^{{x}_{2}-1}p...{\left(1-p \right)}^{{x}_{n}-1}p ={p}^{n}{\left(1-p \right)}^{\sum_{1}^{n}{x}_{i}-n} $

Taking log,

$ lnL\left(p \right)= nln{p}+\left(\sum_{1}^{n}{x}_{i}-n \right)ln{\left(1-p \right)} $

Differentiating and equating to zero, we get,

$ \frac{d\left[lnL\left(p \right)\right]}{dp}=\frac{n}{p} -\frac{\left(\sum_{1}^{n}{x}_{i}-n \right)}{\left(1-p \right)}=0 $

Therefore,

$ p=\frac{n}{\left(\sum_{1}^{n}{x}_{i} \right)} $

So, the maximum likelihood estimator of P is:

$ P=\frac{n}{\left(\sum_{1}^{n}{X}_{i} \right)}=\frac{1}{X} $

This agrees with the intuition because, in n observations of a geometric random variable, there are n successes in the $ \sum_{1}^{n}{X}_{i} $ trials. Thus the estimate of p is the number of successes divided by the total number of trials.


Back to ECE662

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett