(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
[[Image:Lecture5_OldKiwi.pdf]]
 
[[Image:Lecture5_OldKiwi.pdf]]
 +
 +
Even odd Fourrier Series Coefficients
  
 
Let <math>x[n]</math> be a real periodic sequence with fundamental period <math>{N}_{0}</math>  and Fourier coefficients <math>{c}_{k}={a}_{k}+j{b}_{k}</math> where ak and bk are both real.
 
Let <math>x[n]</math> be a real periodic sequence with fundamental period <math>{N}_{0}</math>  and Fourier coefficients <math>{c}_{k}={a}_{k}+j{b}_{k}</math> where ak and bk are both real.
Line 23: Line 25:
 
So now we can see that:
 
So now we can see that:
  
                    </math> {a}_{-k}={a}_{k}</math> and <math> {b}_{-k}=-{b}_{k}</math>
+
  <math> {a}_{-k}={a}_{k}</math> and
 +
  <math> {b}_{-k}=-{b}_{k}</math>
 +
 
 +
[[Frequency Response Example_OldKiwi]]

Latest revision as of 16:36, 30 March 2008

File:Lecture5 OldKiwi.pdf

Even odd Fourrier Series Coefficients

Let $ x[n] $ be a real periodic sequence with fundamental period $ {N}_{0} $ and Fourier coefficients $ {c}_{k}={a}_{k}+j{b}_{k} $ where ak and bk are both real.


Show that $ {a}_{-k}={a}_{k} $ and $ {b}_{-k}=-{b}_{k} $.


If $ x[n] $ is real we have (equation for Fourier coefficients):


$ {c}_{-k}=\frac{1}{{N}_{0}}\sum_{n=0}^{{N}_{0}-1}x[n]{e}^{jk{\omega}_{0}n} $

and further:

$ ={\left(\frac{1}{{N}_{0}}\sum_{n=0}^{{N}_{0}-1}x[n]{e}^{-jk{\omega}_{0}n} \right)}^{*}={{c}^{*}}_{k} $

Therefore:

$ {c}_{-k}={a}_{-k}+j{b}_{-k}={({a}_{k}+{b}_{k})}^{*}={a}_{k}-j{b}_{k} $

So now we can see that:

 $  {a}_{-k}={a}_{k} $ and
 $  {b}_{-k}=-{b}_{k} $

Frequency Response Example_OldKiwi

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva