m
 
Line 1: Line 1:
 +
Help for [[ECE662:Homework_1_OldKiwi|HW1 ECE662 Spring 2012]]
 +
----
 
{ Summary:  To generate "colored" samples <math>\tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)</math> from "white" samples <math>x</math> drawn from <math>\mathcal{N}(\vec{0},I_n)</math>, simply let <math>\tilde{x} = Ax + \mu</math>, where <math>A</math> is the Cholesky decomposition of <math>\Sigma</math>, i.e. <math>\Sigma = AA^T</math>}
 
{ Summary:  To generate "colored" samples <math>\tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma)</math> from "white" samples <math>x</math> drawn from <math>\mathcal{N}(\vec{0},I_n)</math>, simply let <math>\tilde{x} = Ax + \mu</math>, where <math>A</math> is the Cholesky decomposition of <math>\Sigma</math>, i.e. <math>\Sigma = AA^T</math>}
  
Line 26: Line 28:
  
 
<math>\Rightarrow \Sigma = AA^T</math>, where <math>A</math> is lower triangular, and <math>\Sigma</math> is positive definite.  Therefore, <math>A</math> follows the form of what is called the Cholesky decomposition of <math>\Sigma</math>.
 
<math>\Rightarrow \Sigma = AA^T</math>, where <math>A</math> is lower triangular, and <math>\Sigma</math> is positive definite.  Therefore, <math>A</math> follows the form of what is called the Cholesky decomposition of <math>\Sigma</math>.
 +
 +
----
 +
[[ECE662:Homework_1_OldKiwi|Back to HW1, ECE662, Spring 2012]]
 +
 +
[[ECE662:BoutinSpring08_OldKiwi|Back to ECE 662 Spring 2012]]
 +
 +
[[Matlab_resources_OldKiwi|Back to "MATLAB Resources for generating Gaussian Data']]

Latest revision as of 11:51, 9 February 2012

Help for HW1 ECE662 Spring 2012


{ Summary: To generate "colored" samples $ \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma) $ from "white" samples $ x $ drawn from $ \mathcal{N}(\vec{0},I_n) $, simply let $ \tilde{x} = Ax + \mu $, where $ A $ is the Cholesky decomposition of $ \Sigma $, i.e. $ \Sigma = AA^T $}

Consider generating samples $ \tilde{x}\in\mathbb{R}^n \sim \mathcal{N}(\mu,\Sigma) $. Many platforms (e.g. Matlab) have a random number generator to generate iid samples from (white) Gaussian distribution. If we seek to "color" the noise with an arbitrary covariance matrix $ \Sigma $, we must produce a "coloring matrix" $ A $. Let us consider generating a colored sample $ \tilde{x} = [\tilde{x}_1,\tilde{x}_2,\ldots,\tilde{x}_n]^T $ from $ x = [x_1,x_2,\ldots,x_n]^T $, where $ x_1, x_2, \ldots, x_n $ are iid samples drawn from $ \mathcal{N}(0,1) $. (Note: Matlab has a function, mvnrnd.m, to sample from $ \mathcal{N}(\mu,\Sigma) $, but I discuss here the theory behind it). Relate $ \tilde{x} $ to $ x $ as follows:

$ \begin{align} \tilde{x}_1 &= a_{11} x_1 \\ \tilde{x}_2 &= a_{21} x_1 + a_{22} x_2 \\ &... \\ \tilde{x}_n &= \sum_{i=1}^n a_{ni}x_i \\ \end{align} $

We can rewrite this in matrix form as $ \tilde{x} = Ax $, where matrix $ A $ is lower triangular. We have, then, that

$ E[\tilde{x}_n] = \sum_{i=1}^n a_{ni}E[x_i] = 0 $, and

$ Cov[\tilde{x}_n,\tilde{x}_m] = E\left[\left(\sum_{i=1}^na_{ni}x_i\right)\left(\sum_{j=1}^m a_{mj}x_j\right)\right] = \sum_{i=1}^n\sum_{j=1}^m a_{ni}a_{mj}E[x_ix_j] \Rightarrow $

$ Cov(\tilde{x}_n,\tilde{x}_m) $ = $ \sum_{i=1}^{\min(m,n)}a_{ni}a_{mi} $, since $ x_i $'s are independent, $ E[x_i] = 0 $ and $ Var[x_i] = 1 $.

We are now left with the problem of defining $ a_{ni} $'s so that the form of $ Cov(\tilde{x}_n,\tilde{x}_m) $ follows the form of $ \Sigma_{nm} $: i.e.

$ \Sigma_{nm} $ = $ Cov(\tilde{x}_n,\tilde{x}_m) $ = $ \sum_{i=1}^{\min(m,n)}a_{ni}a_{mi} $

$ \Rightarrow \Sigma = AA^T $, where $ A $ is lower triangular, and $ \Sigma $ is positive definite. Therefore, $ A $ follows the form of what is called the Cholesky decomposition of $ \Sigma $.


Back to HW1, ECE662, Spring 2012

Back to ECE 662 Spring 2012

Back to "MATLAB Resources for generating Gaussian Data'

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach