(New page: 2) Pick a partition P of [a,b] <math>a=x_0<x_1<...<x_n=b</math> Pick <math>c_i \in (x_0, x_1) \ i=1,...,N.</math> Let n=N Define <math>c_{n+1}=b</math> and <math>c_0=a</math>. Then ...)
 
 
(One intermediate revision by the same user not shown)
Line 5: Line 5:
 
<math>a=x_0<x_1<...<x_n=b</math>
 
<math>a=x_0<x_1<...<x_n=b</math>
  
Pick <math>c_i \in (x_0, x_1) \ i=1,...,N.</math>
+
Pick <math>c_i \in (x_0, x_1) \ i=1,...,n.</math>
  
Let n=N
 
  
 
Define <math>c_{n+1}=b</math> and <math>c_0=a</math>.
 
Define <math>c_{n+1}=b</math> and <math>c_0=a</math>.
  
Then  <math>\sum_{i=1}^n \phi(c_i)(f(x_i)-f(x_{i-1})) = \sum_{i=1}^N \phi(c_i)f(x_i)-\sum_{i=1}^N \phi(c_i)f(x_{i-1})
+
Then  <math>\sum_{i=1}^n \phi(c_i)(f(x_i)-f(x_{i-1})) = \sum_{i=1}^n \phi(c_i)f(x_i)-\sum_{i=1}^n \phi(c_i)f(x_{i-1})
 
</math>
 
</math>
  
<math>= \phi(c_n)f(x_n)-\phi(c_1)f(x_0) + \sum_{i=1}^{n-1} (\phi(c_i)-\phi(c_{i+1})f(x_i)</math>
+
<math>= \phi(c_n)f(x_n)-\phi(c_1)f(x_0) + \sum_{i=1}^{n-1} (\phi(c_i)-\phi(c_{i+1}))f(x_i)</math>
  
 
<math>
 
<math>
= - f(b)\phi(b) + f(a)\phi(a) - \sum_{i=0}^{n} (\phi(c_{i+1})-\phi(c_{i})f(x_i)</math>.   
+
= - f(b)\phi(b) + f(a)\phi(a) - \sum_{i=0}^{n} (\phi(c_{i+1})-\phi(c_{i}))f(x_i)</math>.   
  
  

Latest revision as of 15:04, 22 July 2008

2)

Pick a partition P of [a,b]

$ a=x_0<x_1<...<x_n=b $

Pick $ c_i \in (x_0, x_1) \ i=1,...,n. $


Define $ c_{n+1}=b $ and $ c_0=a $.

Then $ \sum_{i=1}^n \phi(c_i)(f(x_i)-f(x_{i-1})) = \sum_{i=1}^n \phi(c_i)f(x_i)-\sum_{i=1}^n \phi(c_i)f(x_{i-1}) $

$ = \phi(c_n)f(x_n)-\phi(c_1)f(x_0) + \sum_{i=1}^{n-1} (\phi(c_i)-\phi(c_{i+1}))f(x_i) $

$ = - f(b)\phi(b) + f(a)\phi(a) - \sum_{i=0}^{n} (\phi(c_{i+1})-\phi(c_{i}))f(x_i) $.


(by adding and subtracting $ f(b)\phi(b) $ and $ f(a)\phi(a) $.

Taking the limit on both sides as $ |P| \rightarrow 0 $ gives us the claim.



--Wardbc 15:57, 22 July 2008 (EDT)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood