Difference between revisions of "8.3 Old Kiwi" - Rhea
User
Log in
Actions
View source
History
Recent Changes
Slectures
Squad
Practice
Formulas
Donations
Disclaimer
Home
Print
Revision as of 09:47, 16 July 2008
(
view source
)
Pweigel
(
Talk
)
← Older edit
Latest revision as of 09:53, 16 July 2008
(
view source
)
Pweigel
(
Talk
)
(Removing all content from page)
Line 1:
Line 1:
−
'''Given:''' <math>f \in L^p, p \geq 1, \int_0^1 f(y)sin(xy) dy = 0</math>
−
'''Show:''' f=0 a.e.
−
−
'''Proof:''' Assume wlog that f(0)=0, and extend to the entire line: <math>f(x) = -f(-x), x\in [-1,0), f(x)=0, |x|>1</math>.
−
−
We recall some facts about Fourier transfroms:
−
−
We proved on a HW that <math>f, g \in L^1 \Rightarrow \widehat{f*g} = \hat{f}\hat{g}</math>.
−
−
This implies that <math>\hat{f} = 0 \Rightarrow f=0</math> a.e.
−
−
Let <math>g(x) = \sin(x)\chi_{[-1,1]}</math>. We observe that <math>f*g = 0</math>:
−
−
<math>(f*g)(x) = \int_{-1}^1 f(t)\sin(x-t)dt = \int_{-1}^1 f(t)[\sin(x)\cos(t) - \cos(x)\sin(t)] = 0 \ \forall x</math>,
−
−
since <math>\int_{-1}^1 f(t)\cos(t) = 0</math> since <math>f(t)\cos(t)</math> is odd, and
−
−
<math>\int_{-1}^1 f(t)\sin(t) dt = 2\int_{0}^1 f(t)\sin(t) dt = 0</math> by assumption.
−
−
This implies that <math>\hat{f}\hat{g} = 0 \Rightarrow \hat{f} = 0 \Rightarrow f=0</math> a.e.
Latest revision as of 09:53, 16 July 2008
Shortcuts
Help
Main Wiki Page
Random Page
Special Pages
Log in
Search
Alumni Liaison
Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.
Read more »
Buyue Zhang
Currently Active Pages
x
+
x
Chat
x