(Removing all content from page)
 
Line 1: Line 1:
 +
We know that <math>\int_X |f|^r = \int_0^\infty ry^{r-1}\mu\left\{|f|>y\right\} dy</math>.  If <math>\mu(X) = \infty</math>, the statement is trivial, so assume it's finite.
  
 +
We have
 +
 +
<math>\int_0^\infty ry^{r-1}\mu(|f|>y) dy = \int_0^{\mu(X)^{\frac{-1}{p}}} ry^{r-1}\mu\left\{|f|>y\right\} dy
 +
+\int_{\mu(X)^{\frac{-1}{p}}}^\infty ry^{r-1}\mu\left\{|f|>y\right\} dy  </math>
 +
 +
Now <math>\mu(|f|>y)\leq\mu(X) \Rightarrow \int_0^{\mu(X)^{\frac{-1}{p}}} ry^{r-1}\mu(|f|>y) dy \leq \mu(X)\int_0^{\mu(X)^{\frac{-1}{p}}} ry^{r-1} dy = \mu(X)^{1-\frac{r}{p}}</math>,
 +
 +
and by hypothesis, <math>\mu(|f|>y) \leq c_0y^{-p} \Rightarrow \int_{\mu(X)^{\frac{-1}{p}}}^\infty ry^{r-1}\mu\left\{|f|>y\right\} dy \leq \int_{\mu(X)^{\frac{-1}{p}}}^\infty rc_0y^{-1-p+r} dy = \frac{rc_0}{p-r}\mu(X)^{1-\frac{r}{p}}</math>
 +
 +
Letting <math>c = 1 + \frac{rc_0}{p-r}</math> finishes the proof.
 +
 +
-pw

Latest revision as of 12:33, 11 July 2008

We know that $ \int_X |f|^r = \int_0^\infty ry^{r-1}\mu\left\{|f|>y\right\} dy $. If $ \mu(X) = \infty $, the statement is trivial, so assume it's finite.

We have

$ \int_0^\infty ry^{r-1}\mu(|f|>y) dy = \int_0^{\mu(X)^{\frac{-1}{p}}} ry^{r-1}\mu\left\{|f|>y\right\} dy +\int_{\mu(X)^{\frac{-1}{p}}}^\infty ry^{r-1}\mu\left\{|f|>y\right\} dy $

Now $ \mu(|f|>y)\leq\mu(X) \Rightarrow \int_0^{\mu(X)^{\frac{-1}{p}}} ry^{r-1}\mu(|f|>y) dy \leq \mu(X)\int_0^{\mu(X)^{\frac{-1}{p}}} ry^{r-1} dy = \mu(X)^{1-\frac{r}{p}} $,

and by hypothesis, $ \mu(|f|>y) \leq c_0y^{-p} \Rightarrow \int_{\mu(X)^{\frac{-1}{p}}}^\infty ry^{r-1}\mu\left\{|f|>y\right\} dy \leq \int_{\mu(X)^{\frac{-1}{p}}}^\infty rc_0y^{-1-p+r} dy = \frac{rc_0}{p-r}\mu(X)^{1-\frac{r}{p}} $

Letting $ c = 1 + \frac{rc_0}{p-r} $ finishes the proof.

-pw

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn