(New page: [https://balthier.ecn.purdue.edu/index.php/Algebra_Study])
 
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[https://balthier.ecn.purdue.edu/index.php/Algebra_Study]
+
This is the kiwi page for material relevent to the course MA553: Introduction to Abstract Algebra.
 +
 
 +
==Main Topics of the Course==
 +
 
 +
# [[Group Theory_Old Kiwi]]
 +
## [[Isomorphism Theorems_Old Kiwi]]
 +
## [[Sylow Theorems_Old Kiwi]]
 +
## [[Jordan-Holder_Old Kiwi]]
 +
# [[Ring Theory_Old Kiwi]]
 +
## [[Isomorphism Theorems_Old Kiwi]]
 +
## [[Unique Factorization Domains_Old Kiwi]]
 +
## [[Principal Ideal Domains_Old Kiwi]]
 +
## [[Euclidean Domains_Old Kiwi]]
 +
## [[Polynomial Rings_Old Kiwi]]
 +
# [[Field Theory_Old Kiwi]]
 +
## [[Field Extensions_Old Kiwi]]
 +
## [[Algebraic Closures_Old Kiwi]]
 +
## [[Roots Of Unity_Old Kiwi]]
 +
# [[Galois Theory_Old Kiwi]]
 +
# [[New Topic_Old Kiwi]]
 +
 
 +
==Other Topics==
 +
Add other relevent/interesting pages here:
 +
 
 +
You can use latex in Kiwi, here is a
 +
[http://www.stdout.org/~winston/latex/ Latex Cheat Sheet]
 +
 
 +
Sample latex equation:
 +
<math>Arclength = s(t) = \int_{0}^{t} \sqrt{x'(\xi)^{2} + y'(\xi)^{2}}d\xi</math>

Latest revision as of 11:35, 10 June 2008

This is the kiwi page for material relevent to the course MA553: Introduction to Abstract Algebra.

Main Topics of the Course

  1. Group Theory_Old Kiwi
    1. Isomorphism Theorems_Old Kiwi
    2. Sylow Theorems_Old Kiwi
    3. Jordan-Holder_Old Kiwi
  2. Ring Theory_Old Kiwi
    1. Isomorphism Theorems_Old Kiwi
    2. Unique Factorization Domains_Old Kiwi
    3. Principal Ideal Domains_Old Kiwi
    4. Euclidean Domains_Old Kiwi
    5. Polynomial Rings_Old Kiwi
  3. Field Theory_Old Kiwi
    1. Field Extensions_Old Kiwi
    2. Algebraic Closures_Old Kiwi
    3. Roots Of Unity_Old Kiwi
  4. Galois Theory_Old Kiwi
  5. New Topic_Old Kiwi

Other Topics

Add other relevent/interesting pages here:

You can use latex in Kiwi, here is a Latex Cheat Sheet

Sample latex equation: $ Arclength = s(t) = \int_{0}^{t} \sqrt{x'(\xi)^{2} + y'(\xi)^{2}}d\xi $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach