(Main Topics of the Course)
(Other Topics)
 
(8 intermediate revisions by 6 users not shown)
Line 9: Line 9:
  
 
Office Hours: M W 11:00 am - 12:00 am
 
Office Hours: M W 11:00 am - 12:00 am
 +
 +
Email : asan@purdue.edu
  
 
== Main Topics of the Course ==
 
== Main Topics of the Course ==
Line 33: Line 35:
 
##[[Unit step response of an LTI system_Old Kiwi]]
 
##[[Unit step response of an LTI system_Old Kiwi]]
 
#Lecture 8
 
#Lecture 8
 +
##[[LTI systems described by differential equations(CT) and difference equation(DT)_Old Kiwi]]
 +
##[[Response of LTI systems to complex exponentials_Old Kiwi]]
 
#Lecture 9
 
#Lecture 9
 
##[[Response of LTI systems to complex exponentials_Old Kiwi]]
 
##[[Response of LTI systems to complex exponentials_Old Kiwi]]
Line 98: Line 102:
  
 
#[[Exam 1 - Summer 08_Old Kiwi]]
 
#[[Exam 1 - Summer 08_Old Kiwi]]
 +
#[[ECE301:SanSummer08:Exam II_Old Kiwi]]
  
 
== Bonus Problems ==
 
== Bonus Problems ==
Line 105: Line 110:
 
#[[Bonus 5 - Exam I_Old Kiwi]]
 
#[[Bonus 5 - Exam I_Old Kiwi]]
 
#[[Bonus 6 - Convolution Proofs_Old Kiwi]]
 
#[[Bonus 6 - Convolution Proofs_Old Kiwi]]
 +
#[[Bonus 12 - Exam II_Old Kiwi]]
 +
#[[Bonus 12 scores_Old Kiwi]]
  
 
==Other Topics==
 
==Other Topics==
Line 116: Line 123:
 
#[[Practice Problems - Exam 1_Old Kiwi]]
 
#[[Practice Problems - Exam 1_Old Kiwi]]
 
#[[Exam 1 Formula's_Old Kiwi]]
 
#[[Exam 1 Formula's_Old Kiwi]]
 +
#[[Practice Midterm 2 - Aung Kyi San Summer 2005 Solutions_Old Kiwi]]

Latest revision as of 10:32, 25 July 2008

General Course Information

ECE 301

Summer 2008

Instructor: Aung Kyi San

Lecture: M T W Th F 9:50 am - 10:50 am @ EE 117

Office Hours: M W 11:00 am - 12:00 am

Email : asan@purdue.edu

Main Topics of the Course

  1. Lecture 1
    1. Signal Energy and Power_Old Kiwi
    2. Transformation of the independent variable_Old Kiwi
  2. Lecture 2
    1. Periodic Signals_Old Kiwi
    2. Even and Odd Signals_Old Kiwi
    3. Exponential and Sinusoidal signals (CT)_Old Kiwi
  3. Lecture 3
    1. Exponential and Sinusoidal signals (DT)_Old Kiwi
    2. The unit impulse and unit step functions_Old Kiwi
  4. Lecture 4
    1. Continuous-Time and Discrete-Time_Old Kiwi
    2. Basic System Properties_Old Kiwi
  5. Lecture 5
    1. DT LTI systems: The convolution sum_Old Kiwi
  6. Lecture 6
    1. CT LTI systems: The convolution integral_Old Kiwi
  7. Lecture 7
    1. Properties of LTI systems_Old Kiwi
    2. Unit step response of an LTI system_Old Kiwi
  8. Lecture 8
    1. LTI systems described by differential equations(CT) and difference equation(DT)_Old Kiwi
    2. Response of LTI systems to complex exponentials_Old Kiwi
  9. Lecture 9
    1. Response of LTI systems to complex exponentials_Old Kiwi
    2. Fourier Series representation of continuous-time periodic signals_Old Kiwi
  10. Lecture 10
    1. Fourier Series Representation of CT periodic signals_Old Kiwi
    2. Properties of CT Fourier Series_Old Kiwi
  11. Lecture 11
    1. Fourier Series Representation of CT periodic signals using properties_Old Kiwi
    2. Fourier Series Representation of DT periodic signals_Old Kiwi
  12. Lecture 12
    1. Properties of discrete time Fourier Series_Old Kiwi
    2. Fourier Series and LTI Systems_Old Kiwi
  13. Lecture 13
    1. CT Fourier Transform_Old Kiwi
  14. Lecture 14
    1. Convergence of Fourier Transform_Old Kiwi
    2. Fourier Transform of periodic signals_Old Kiwi
    3. Properties of Continuous Fourier Transforms_Old Kiwi
  15. Lecture 15
    1. Applications of Convolution Property_Old Kiwi
    2. Applications of Multiplication Property_Old Kiwi
    3. Frequency selective filtering_Old Kiwi
  16. Lecture 16
    1. Frequency selective filtering_Old Kiwi
    2. CT LTI systems charachterized by LCCDE_Old Kiwi
  17. Lecture 17
    1. Communication Systems_Old Kiwi
    2. Complex Exponential And Sinusoidal_Old Kiwi
    3. Amplitude Modulation (AM_Old Kiwi
    4. Demodulation for AM_Old Kiwi
  18. Lecture 18
    1. Frequency Division Multiplextion (FDM)_Old Kiwi
    2. Single-Sideband Sinusoidal AM_Old Kiwi
    3. AM with a pluse-train carrier_Old Kiwi
  19. Lecture 19
    1. Discrete-time Fourir Transform_Old Kiwi
    2. DTFT for periodic signals_Old Kiwi
    3. Properties of DTFT_Old Kiwi
  20. Lecture 20
    1. Tables 5.1 and 5.2_Old Kiwi
    2. LTI systems characterized by LCCDEs_Old Kiwi
  21. Lecture 21
    1. Duality_Old Kiwi
    2. CTFT_Old Kiwi
    3. DTFS_Old Kiwi
    4. CRFS & DTFT_Old Kiwi
  22. Lecture 22
    1. Sampling_Old Kiwi
    2. Representation of a CT signalby its samples:_Old Kiwi
    3. The Sampling Theorem_Old Kiwi

Homework Problems

  1. Homework 1 - Summer 08_Old Kiwi
  2. Homework 2 - Summer 08_Old Kiwi
  3. Homework 3 - Summer 08_Old Kiwi
  4. Homework 4 - Missing 3.28 & 4.4b_Old Kiwi
  5. Homework 4 - 4.4b_Old Kiwi
  6. Homework 5 - Missing 4.45, 4.46 & 4.49_Old Kiwi
  7. Homework 5 - Missing First three and last one_Old Kiwi
  8. Homework 6 - Don't know 5.8_Old Kiwi

Exams

  1. Exam 1 - Summer 08_Old Kiwi
  2. ECE301:SanSummer08:Exam II_Old Kiwi

Bonus Problems

  1. Bonus 2 - Summer 08_Old Kiwi
  2. Bonus 3 - Exam I_Old Kiwi
  3. Bonus 5 - Exam I_Old Kiwi
  4. Bonus 6 - Convolution Proofs_Old Kiwi
  5. Bonus 12 - Exam II_Old Kiwi
  6. Bonus 12 scores_Old Kiwi

Other Topics

Add other relevent/interesting pages here:

You can use latex in Kiwi, here is a Latex Cheat Sheet

  1. Practice Problems - Exam 1_Old Kiwi
  2. Exam 1 Formula's_Old Kiwi
  3. Practice Midterm 2 - Aung Kyi San Summer 2005 Solutions_Old Kiwi

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett