(46 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:ECE302Fall2008_ProfSanghavi]] | ||
+ | [[Category:probabilities]] | ||
+ | [[Category:ECE302]] | ||
+ | [[Category:cheat sheet]] | ||
+ | =[[ECE302]] Cheat Sheet number 4= | ||
+ | ==Maximum Likelihood Estimation (ML)== | ||
+ | :<math>\hat a_{ML} = \overset{max}{a} f_{X}(x_i;a)</math> continuous | ||
+ | :<math>\hat a_{ML} = \overset{max}{a} Pr(x_i;a)</math> discrete | ||
− | |||
− | |||
− | <math>\ | + | ==Chebyshev Inequality== |
+ | "Any RV is likely to be close to its mean" | ||
+ | |||
+ | :<math>\Pr(\left|X-E[X]\right|\geq C)\leq\frac{var(X)}{C^2}.</math> | ||
+ | |||
==Maximum A-Posteriori Estimation (MAP)== | ==Maximum A-Posteriori Estimation (MAP)== | ||
− | <math>\hat \theta_{MAP}(x) = \text{arg max} | + | :<math>\hat \theta_{MAP}(x) = \text{arg }\overset{max}{\theta} P_{X|\theta}(x|\theta)P_ |
{\theta}(\theta)</math> | {\theta}(\theta)</math> | ||
− | <math>\hat \theta_{MAP}(x) = \text{arg max} | + | :<math>\hat \theta_{MAP}(x) = \text{arg }\overset{max}{\theta} f_{X|\theta}(x|\theta)P_ |
{\theta}(\theta)</math> | {\theta}(\theta)</math> | ||
==Minimum Mean-Square Estimation (MMSE)== | ==Minimum Mean-Square Estimation (MMSE)== | ||
− | <math>\hat{y}_{\rm MMSE}(x) = \ | + | :<math>\hat{y}_{\rm MMSE}(x) = \int_{-\infty}^{\infty} {y}{f}_{\rm Y|X}(y|x)\, dy={E}[Y|X=x]</math> |
+ | ==Law Of Iterated Expectation== | ||
+ | :<math>E[E[X|Y]] = | ||
+ | \begin{cases} | ||
+ | \sum_{y} E[X|Y = y]p_Y(y),\,\,\,\,\,\,\,\,\,\,\mbox{ Y discrete,}\\ | ||
+ | \int_{-\infty}^{+\infty} E[X|Y = y]f_Y(y)\,dy,\mbox{ Y continuous.} | ||
+ | \end{cases}</math> | ||
− | + | Using the total expectation theorem: | |
+ | :<math>E\Big[ E[X|Y]] = E[X]</math> | ||
− | + | ==Mean Square Error== | |
− | + | ||
+ | :<math>MSE = E[(\Theta - \hat \theta(x))^2]</math> | ||
− | + | :<math>MSE(E(\Theta)) = var(\Theta) \,</math> | |
− | + | ||
− | + | ||
− | + | ||
==Linear Minimum Mean-Square Estimation (LMMSE)== | ==Linear Minimum Mean-Square Estimation (LMMSE)== | ||
− | <math>\hat{ | + | The LMMS estimator <math>\hat{Y}</math> of Y based on the variable X is |
− | ==Hypothesis Testing | + | :<math>\hat{Y}_{LMMSE}(x) = E[Y]+\frac{COV(Y,X)}{Var(X)}(X-E[X]) = E[Y] + \rho \frac{\sigma_{Y}}{\sigma_{X}}(X-E[X])</math> |
+ | |||
+ | where | ||
+ | ::<math>\rho = \frac{COV(Y,X)}{\sigma_{Y}\sigma_{X}}</math> | ||
+ | |||
+ | Law of Iterated Expectation: E[E[X|Y]]=E[X] | ||
+ | |||
+ | COV(X,Y)=E[XY] - E[X]E[Y] | ||
+ | |||
+ | ==Hypothesis Testing== | ||
+ | In hypothesis testing <math>\Theta</math> takes on one of ''m'' values, <math>\theta_1,...,\theta_m</math> where ''m'' is usually small; often ''m'' = 2, in which case it is a binary hypthothesis testing problem. | ||
+ | |||
+ | The event <math>\Theta = \theta_i</math> is the <math>i^{th}</math> hypothesis denoted by <math>H_i</math> | ||
+ | ===ML Rule=== | ||
Given a value of X, we will say H1 is true if X is in region R, else will will say H0 is true. | Given a value of X, we will say H1 is true if X is in region R, else will will say H0 is true. | ||
− | '''Type I | + | '''Type I Error: False Rejection''' |
+ | |||
+ | Say <math>H_1</math> when truth is <math>H_0</math>. Probability of this is: | ||
+ | :<math>Pr(\mbox{Say } H_1|H_0) = Pr(x \in R|\theta_0)</math> | ||
+ | |||
+ | '''Type II Error: False Acceptance''' | ||
+ | |||
+ | Say <math>H_0</math> when truth is <math>H_1</math>. Probability of this is: | ||
+ | :<math>Pr(\mbox{Say }H_0|H_1) = Pr(x \in R^C|\theta_1)</math> | ||
+ | |||
+ | |||
+ | Say H1 if; | ||
+ | :<math>\{f_{X|\theta}(x|\theta1)</math> > <math>\{f_{X|\theta}(x|\theta0)</math> | ||
+ | Else H0 | ||
+ | |||
+ | Say H0 if; | ||
+ | :<math>\{f_{X|\theta}(x|\theta1)</math> <= <math>\{f_{X|\theta}(x|\theta0)</math> | ||
+ | Else H1 | ||
+ | |||
+ | ===MAP Rule=== | ||
+ | |||
+ | :<math>\mbox{Overall P(err)} = P_{\theta}(\theta_{0})Pr\Big[\mbox{Say }H_{1}|H_{0}\Big] +P_{\theta}(\theta_{1})Pr\Big[\mbox{Say }H_{0}|H_{1}\Big] </math> | ||
+ | |||
+ | Note that for Overall P(error), cannot use values from ML estimate. | ||
+ | |||
+ | ===Likelihood Ratio Test=== | ||
− | + | '''''How to find a good rule?''''' | |
+ | --[[User:Khosla|Khosla]] 16:44, 13 December 2008 (UTC) | ||
− | + | For X is discrete | |
− | + | :<math>\ L(x) = \frac{p_{X|\theta} (x|\theta_1)}{p_{X|\theta} (x|\theta_0)} </math> | |
− | + | Choose threshold (T), | |
− | + | :<math>\mbox{Say } | |
+ | \begin{cases} | ||
+ | H_{1}; \mbox{ if } L(x) > T\\ | ||
+ | H_{0}; \mbox{ if } L(x) < T | ||
+ | \end{cases}</math> | ||
− | + | The Maximum Likelihood rule is a Likelihood Ratio Test with T = 1 | |
− | Likelihood Ratio | + | The MAP rule is a Likelihood Ratio Test with <math>T=\frac{P_\theta(\theta_0)}{P_\theta(\theta_1)}</math> |
+ | '''Observations''': | ||
+ | #as T decreases Type I Error Increases | ||
+ | #as T decreases Type II Error Decreases | ||
+ | #as T increases Type I Error Decreases | ||
+ | #as T increases Type II Error Increases | ||
+ | (<math>T = 0 \Rightarrow R = \{x|P_{X|\theta}(x|\theta_1) > 0\}</math>. So, Type I error (<math>Pr(x\in R | H_0)</math>) is maximized as T is minimized.) | ||
− | + | The threshold value T=1, corresponds to the ML rule. | |
+ | ---- | ||
+ | [[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]] |
Latest revision as of 12:06, 22 November 2011
Contents
- 1 ECE302 Cheat Sheet number 4
ECE302 Cheat Sheet number 4
Maximum Likelihood Estimation (ML)
- $ \hat a_{ML} = \overset{max}{a} f_{X}(x_i;a) $ continuous
- $ \hat a_{ML} = \overset{max}{a} Pr(x_i;a) $ discrete
Chebyshev Inequality
"Any RV is likely to be close to its mean"
- $ \Pr(\left|X-E[X]\right|\geq C)\leq\frac{var(X)}{C^2}. $
Maximum A-Posteriori Estimation (MAP)
- $ \hat \theta_{MAP}(x) = \text{arg }\overset{max}{\theta} P_{X|\theta}(x|\theta)P_ {\theta}(\theta) $
- $ \hat \theta_{MAP}(x) = \text{arg }\overset{max}{\theta} f_{X|\theta}(x|\theta)P_ {\theta}(\theta) $
Minimum Mean-Square Estimation (MMSE)
- $ \hat{y}_{\rm MMSE}(x) = \int_{-\infty}^{\infty} {y}{f}_{\rm Y|X}(y|x)\, dy={E}[Y|X=x] $
Law Of Iterated Expectation
- $ E[E[X|Y]] = \begin{cases} \sum_{y} E[X|Y = y]p_Y(y),\,\,\,\,\,\,\,\,\,\,\mbox{ Y discrete,}\\ \int_{-\infty}^{+\infty} E[X|Y = y]f_Y(y)\,dy,\mbox{ Y continuous.} \end{cases} $
Using the total expectation theorem:
- $ E\Big[ E[X|Y]] = E[X] $
Mean Square Error
- $ MSE = E[(\Theta - \hat \theta(x))^2] $
- $ MSE(E(\Theta)) = var(\Theta) \, $
Linear Minimum Mean-Square Estimation (LMMSE)
The LMMS estimator $ \hat{Y} $ of Y based on the variable X is
- $ \hat{Y}_{LMMSE}(x) = E[Y]+\frac{COV(Y,X)}{Var(X)}(X-E[X]) = E[Y] + \rho \frac{\sigma_{Y}}{\sigma_{X}}(X-E[X]) $
where
- $ \rho = \frac{COV(Y,X)}{\sigma_{Y}\sigma_{X}} $
Law of Iterated Expectation: E[E[X|Y]]=E[X]
COV(X,Y)=E[XY] - E[X]E[Y]
Hypothesis Testing
In hypothesis testing $ \Theta $ takes on one of m values, $ \theta_1,...,\theta_m $ where m is usually small; often m = 2, in which case it is a binary hypthothesis testing problem.
The event $ \Theta = \theta_i $ is the $ i^{th} $ hypothesis denoted by $ H_i $
ML Rule
Given a value of X, we will say H1 is true if X is in region R, else will will say H0 is true.
Type I Error: False Rejection
Say $ H_1 $ when truth is $ H_0 $. Probability of this is:
- $ Pr(\mbox{Say } H_1|H_0) = Pr(x \in R|\theta_0) $
Type II Error: False Acceptance
Say $ H_0 $ when truth is $ H_1 $. Probability of this is:
- $ Pr(\mbox{Say }H_0|H_1) = Pr(x \in R^C|\theta_1) $
Say H1 if;
- $ \{f_{X|\theta}(x|\theta1) $ > $ \{f_{X|\theta}(x|\theta0) $
Else H0
Say H0 if;
- $ \{f_{X|\theta}(x|\theta1) $ <= $ \{f_{X|\theta}(x|\theta0) $
Else H1
MAP Rule
- $ \mbox{Overall P(err)} = P_{\theta}(\theta_{0})Pr\Big[\mbox{Say }H_{1}|H_{0}\Big] +P_{\theta}(\theta_{1})Pr\Big[\mbox{Say }H_{0}|H_{1}\Big] $
Note that for Overall P(error), cannot use values from ML estimate.
Likelihood Ratio Test
How to find a good rule? --Khosla 16:44, 13 December 2008 (UTC)
For X is discrete
- $ \ L(x) = \frac{p_{X|\theta} (x|\theta_1)}{p_{X|\theta} (x|\theta_0)} $
Choose threshold (T),
- $ \mbox{Say } \begin{cases} H_{1}; \mbox{ if } L(x) > T\\ H_{0}; \mbox{ if } L(x) < T \end{cases} $
The Maximum Likelihood rule is a Likelihood Ratio Test with T = 1 The MAP rule is a Likelihood Ratio Test with $ T=\frac{P_\theta(\theta_0)}{P_\theta(\theta_1)} $
Observations:
- as T decreases Type I Error Increases
- as T decreases Type II Error Decreases
- as T increases Type I Error Decreases
- as T increases Type II Error Increases
($ T = 0 \Rightarrow R = \{x|P_{X|\theta}(x|\theta_1) > 0\} $. So, Type I error ($ Pr(x\in R | H_0) $) is maximized as T is minimized.)
The threshold value T=1, corresponds to the ML rule.