(New page: Decision Rule: A map from values of x to Ho or H1 if x E R, say H1 else if x does not contain R say Ho Max-likelihood Rule: Pick hypothesis that maxes conditional PDF ML Rule: say H1 i...)
 
 
Line 1: Line 1:
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
=Binary Hypothesis Testing=
 +
 
Decision Rule: A map from values of x to Ho or H1
 
Decision Rule: A map from values of x to Ho or H1
 
if x E R, say H1
 
if x E R, say H1
Line 18: Line 23:
 
Probability of Type I : Pr(x E R|H0)
 
Probability of Type I : Pr(x E R|H0)
 
Probablitiy of Type II: Pr(X E Rc|H1)
 
Probablitiy of Type II: Pr(X E Rc|H1)
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 12:43, 22 November 2011

Binary Hypothesis Testing

Decision Rule: A map from values of x to Ho or H1 if x E R, say H1 else if x does not contain R say Ho


Max-likelihood Rule:

Pick hypothesis that maxes conditional PDF

ML Rule: say H1 if fx|theta(x|theta1) > fx|theta0)

            H0 if fx|theta(x|theta1) <= fx|theta(theta|theta0)

Rml = {X such that fx|theta(x|theta1) > fx|theta(x|theta0}

Type I : Say H1 when truth is Ho Type II: say H0 when truth is H1

Probability of Type I : Pr(x E R|H0) Probablitiy of Type II: Pr(X E Rc|H1)


Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang