(New page: Think I might be stumped on this problem. I was thinking to show that Eisenstein fails when n isn't prime, but I'm not sure how to do that.)
 
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:Euler's formula]]
 +
[[Category:complex numbers]]
 +
 +
=Problem=
 +
Show that <math>Phi_n(x)</math> is reducible if <math>n</math> is not prime.
 +
 +
----
 
Think I might be stumped on this problem.  I was thinking to show that Eisenstein fails when n isn't prime, but I'm not sure how to do that.
 
Think I might be stumped on this problem.  I was thinking to show that Eisenstein fails when n isn't prime, but I'm not sure how to do that.
 +
---
 +
 +
something by using the counter...?
 +
 +
----
 +
I'm working on it, will update in a little while...
 +
:--[[User:Narupley|Nick Rupley]] 23:21, 8 April 2009 (UTC)
 +
 +
----
 +
Eisenstein's Criterion gives sufficient conditions for a polynomial to be irreduible over <math>\scriptstyle\mathbb{Q}</math>, but not necessary conditions. That is, you can't use the inverse of Eisenstein's Criterion to show that a polynomial is reducible.
 +
 +
Now, onto cyclotomic polynomials. I'm pretty sure Uli has a typo in the homework question, because <math>\scriptstyle\Phi_n(x)</math> is irreducible over <math>\scriptstyle\mathbb{Q}</math> for all <math>\scriptstyle n\in\mathbb{N}</math>. For any positive integer <math>\scriptstyle n</math>, the <math>\scriptstyle n</math>-th cyclotomic polynomial <math>\scriptstyle\Phi_n(x)</math> is defined as:
 +
 +
<math>\scriptstyle\Phi_n(x)\ =\ \prod_\zeta(x-\zeta)</math>, where <math>\scriptstyle\zeta</math> ranges through the [http://mathworld.wolfram.com/PrimitiveRootofUnity.html primitive <math>\scriptstyle n</math>-th roots of unity].
 +
 +
I could go into detail, but it is much better explained here: [http://mathworld.wolfram.com/CyclotomicPolynomial.html Cyclotomic Polynomials]
 +
 +
For reference, here are some of the first <math>\scriptstyle n</math>-th cyclotomic polynomials:
 +
 +
<math>\scriptstyle\Phi_1(x)\ =\ x-1</math>
 +
 +
<math>\scriptstyle\Phi_2(x)\ =\ x+1</math>
 +
 +
<math>\scriptstyle\Phi_3(x)\ =\ x^2+x+1</math>
 +
 +
<math>\scriptstyle\Phi_4(x)\ =\ x^2+1</math>
 +
 +
<math>\scriptstyle\Phi_5(x)\ =\ x^4+x^3+x^2+x+1</math>
 +
 +
<math>\scriptstyle\Phi_6(x)\ =\ x^2-x+1</math>
 +
 +
For example, let's look at <math>\scriptstyle\Phi_4(x)</math>. What are the primitive 4-th roots of unity? By inspection it's obvious that they are <math>\scriptstyle i</math> and <math>\scriptstyle -i</math>, since <math>\scriptstyle i^4\ =\ (-i)^4\ =\ 1</math>. We could also reach this answer by looking at the more general set of 4-th roots of unity (not necessarily primitive) <math>\scriptstyle\zeta_k\ \equiv\ e^{2\pi ik/4},\ k\equiv\{1,2,3,4\}</math> and then only take the roots for which <math>\scriptstyle k</math> and 4 are relatively prime. Then, <math>\scriptstyle k\equiv \{1,3\}</math>, and <math>\scriptstyle\zeta_k\ \equiv\ \{e^{\pi i/2}, e^{3\pi i/2}\}\ =\ \{i, -i\}</math> ([[more on Eulers formula| Euler's Formula]] helps out here). To check, we can expand the factors:
 +
 +
<math>\scriptstyle(x-i)(x+i)\ =\ x^2-ix+ix-i^2\ =\ x^2+1\ =\ \Phi_4(x)\ \checkmark</math>
 +
 +
The cyclotomic polynomials are actually irreducible over <math>\scriptstyle\mathbb{Q}</math> for all positive integers. [http://everything2.com/title/irreducibility%2520of%2520cyclotomic%2520polynomials Here] is a proof of that statement.
 +
 +
 +
So, I'm going to assume that instead of <math>\scriptstyle\Phi_n</math>, Uli meant the polynomial <math>\scriptstyle\frac{x^n-1}{x-1}</math>. Obviously <math>\scriptstyle1</math> is a root of <math>\scriptstyle x^n-1</math> and thus <math>\scriptstyle x-1</math> divides <math>\scriptstyle x^n-1</math>, so there are no problems there. Indeed for any prime <math>\scriptstyle n</math>, <math>\scriptstyle\frac{x^n-1}{x-1}\ =\ x^{n-1}+x^{n-2}+\ldots+x+1\ =\ \Phi_n(x)</math>, and is irreducible over <math>\scriptstyle\mathbb{Q}</math> (this is proved in the book on pp308-309). So, what happens when <math>\scriptstyle n</math> is composite?
 +
 +
If <math>\scriptstyle n</math> is composite, then there exists an integer <math>\scriptstyle a\geq2</math> such that <math>\scriptstyle a\mid n</math>. Consider the primitive <math>\scriptstyle a</math>-th root of unity <math>\scriptstyle\zeta_a</math>. We know that <math>\scriptstyle\zeta_a^a\ =\ 1</math>, from the definition of a primitive root of unity. Now consider the <math>\scriptstyle a</math>-th cyclotomic polynomial <math>\scriptstyle\Phi_a(x)</math>. Since <math>\scriptstyle\zeta_a</math> is a ''primitive'' <math>\scriptstyle a</math>-th root of unity, <math>\scriptstyle\Phi_a(x)</math> must therefore be a minimal, irreducible polynomial of <math>\scriptstyle\zeta_a</math>. This is important. Return [http://everything2.com/title/irreducibility%2520of%2520cyclotomic%2520polynomials here] to see why it must be minimal for <math>\scriptstyle\zeta_a</math> over <math>\scriptstyle\mathbb{Q}</math>.
 +
 +
Now, remember that <math>\scriptstyle a\mid n</math>. This implies that for some positive integer <math>\scriptstyle b</math>, <math>\scriptstyle n\ =\ ab</math>.
 +
 +
<math>\scriptstyle\Rightarrow\ \zeta_a^n\ =\ \zeta_a^{ab}\ =\ (\zeta_a^a)^b\ =\ 1^b\ =\ 1</math>. This means that <math>\scriptstyle\zeta_a</math> is actually an <math>\scriptstyle n</math>-th root of unity as well! What does this mean? Recall that a number <math>\scriptstyle r</math> is an <math>\scriptstyle n</math>-th root of unity if <math>\scriptstyle r^n\ =\ 1</math>. But that is equivalent to saying that <math>\scriptstyle r</math> is a zero of the polynomial <math>\scriptstyle x^n-1</math>.  So, since <math>\scriptstyle\Phi_a(x)</math> is the ''minimal'' polynomial over the primitive <math>\scriptstyle a</math>-th root of unity <math>\scriptstyle\zeta_a</math>,
 +
<math>\scriptstyle\Phi_a(x)</math> must therefore divide <math>\scriptstyle x^n-1</math>.
 +
 +
Now return to the polynomial <math>\scriptstyle\frac{x^n-1}{x-1}</math>. We know that if <math>\scriptstyle n</math> is composite, there exists a divisor <math>\scriptstyle a\geq2</math> such that <math>\scriptstyle a\mid n</math>. We now also know that this implies that <math>\scriptstyle\Phi_a(x)\textstyle\mid\scriptstyle\frac{x^n-1}{x-1}</math>.
 +
 +
It follows that <math>\scriptstyle\frac{x^n-1}{x-1}</math> can be expressed as a product <math>\scriptstyle\Phi_a(x)\cdot g(x)</math> for some <math>\scriptstyle g(x)</math>. It therefore must be reducible over <math>\scriptstyle\mathbb{Q}</math>.  <math>\scriptstyle\Box</math>
 +
 +
 +
For futher clarification, look at <math>\scriptstyle f(x)\ =\ \frac{x^6-1}{x-1}</math> for an example. We know that <math>\scriptstyle2\mid6</math>, so <math>\scriptstyle\Phi_2(x)\ =\ x+1</math> must divide <math>\scriptstyle\frac{x^6-1}{x-1}\ =\ x^5+x^4+x^3+x^2+x+1</math>. By long division:
 +
 +
    <math>\scriptstyle x^4\ \ \ +x^2\ \ \ \ \ +1</math>
 +
<math>\scriptstyle x+1)\overline{x^5+x^4+x^3+x^2+x+1}</math>
 +
  <math>\scriptstyle-\underline{x^5+x^4}</math>
 +
      <math>\scriptstyle0\ +x^3+x^2</math>
 +
        <math>\scriptstyle-\ \underline{x^3+x^2}</math>
 +
            <math>\scriptstyle0\ +x+1</math>
 +
              <math>\scriptstyle-\ \underline{x+1}</math>
 +
                  <math>\scriptstyle0</math>
 +
 +
So, <math>\scriptstyle\frac{x^6-1}{x-1}\ =\ \Phi_2(x)\cdot(x^4+x^2+1)</math>, and is clearly reducible over <math>\scriptstyle\mathbb{Q}</math>. <math>\scriptstyle\checkmark</math>
 +
 +
(By the way, Chapter 33 in the book will help a lot too if you're still confused; it focuses completely on cyclotomic field extensions.)
 +
:--[[User:Narupley|Nick Rupley]] 01:58, 9 April 2009 (UTC)

Latest revision as of 05:11, 23 September 2011


Problem

Show that $ Phi_n(x) $ is reducible if $ n $ is not prime.


Think I might be stumped on this problem. I was thinking to show that Eisenstein fails when n isn't prime, but I'm not sure how to do that. ---

something by using the counter...?


I'm working on it, will update in a little while...

--Nick Rupley 23:21, 8 April 2009 (UTC)

Eisenstein's Criterion gives sufficient conditions for a polynomial to be irreduible over $ \scriptstyle\mathbb{Q} $, but not necessary conditions. That is, you can't use the inverse of Eisenstein's Criterion to show that a polynomial is reducible.

Now, onto cyclotomic polynomials. I'm pretty sure Uli has a typo in the homework question, because $ \scriptstyle\Phi_n(x) $ is irreducible over $ \scriptstyle\mathbb{Q} $ for all $ \scriptstyle n\in\mathbb{N} $. For any positive integer $ \scriptstyle n $, the $ \scriptstyle n $-th cyclotomic polynomial $ \scriptstyle\Phi_n(x) $ is defined as:

$ \scriptstyle\Phi_n(x)\ =\ \prod_\zeta(x-\zeta) $, where $ \scriptstyle\zeta $ ranges through the primitive $ \scriptstyle n $-th roots of unity.

I could go into detail, but it is much better explained here: Cyclotomic Polynomials

For reference, here are some of the first $ \scriptstyle n $-th cyclotomic polynomials:

$ \scriptstyle\Phi_1(x)\ =\ x-1 $

$ \scriptstyle\Phi_2(x)\ =\ x+1 $

$ \scriptstyle\Phi_3(x)\ =\ x^2+x+1 $

$ \scriptstyle\Phi_4(x)\ =\ x^2+1 $

$ \scriptstyle\Phi_5(x)\ =\ x^4+x^3+x^2+x+1 $

$ \scriptstyle\Phi_6(x)\ =\ x^2-x+1 $

For example, let's look at $ \scriptstyle\Phi_4(x) $. What are the primitive 4-th roots of unity? By inspection it's obvious that they are $ \scriptstyle i $ and $ \scriptstyle -i $, since $ \scriptstyle i^4\ =\ (-i)^4\ =\ 1 $. We could also reach this answer by looking at the more general set of 4-th roots of unity (not necessarily primitive) $ \scriptstyle\zeta_k\ \equiv\ e^{2\pi ik/4},\ k\equiv\{1,2,3,4\} $ and then only take the roots for which $ \scriptstyle k $ and 4 are relatively prime. Then, $ \scriptstyle k\equiv \{1,3\} $, and $ \scriptstyle\zeta_k\ \equiv\ \{e^{\pi i/2}, e^{3\pi i/2}\}\ =\ \{i, -i\} $ ( Euler's Formula helps out here). To check, we can expand the factors:

$ \scriptstyle(x-i)(x+i)\ =\ x^2-ix+ix-i^2\ =\ x^2+1\ =\ \Phi_4(x)\ \checkmark $

The cyclotomic polynomials are actually irreducible over $ \scriptstyle\mathbb{Q} $ for all positive integers. Here is a proof of that statement.


So, I'm going to assume that instead of $ \scriptstyle\Phi_n $, Uli meant the polynomial $ \scriptstyle\frac{x^n-1}{x-1} $. Obviously $ \scriptstyle1 $ is a root of $ \scriptstyle x^n-1 $ and thus $ \scriptstyle x-1 $ divides $ \scriptstyle x^n-1 $, so there are no problems there. Indeed for any prime $ \scriptstyle n $, $ \scriptstyle\frac{x^n-1}{x-1}\ =\ x^{n-1}+x^{n-2}+\ldots+x+1\ =\ \Phi_n(x) $, and is irreducible over $ \scriptstyle\mathbb{Q} $ (this is proved in the book on pp308-309). So, what happens when $ \scriptstyle n $ is composite?

If $ \scriptstyle n $ is composite, then there exists an integer $ \scriptstyle a\geq2 $ such that $ \scriptstyle a\mid n $. Consider the primitive $ \scriptstyle a $-th root of unity $ \scriptstyle\zeta_a $. We know that $ \scriptstyle\zeta_a^a\ =\ 1 $, from the definition of a primitive root of unity. Now consider the $ \scriptstyle a $-th cyclotomic polynomial $ \scriptstyle\Phi_a(x) $. Since $ \scriptstyle\zeta_a $ is a primitive $ \scriptstyle a $-th root of unity, $ \scriptstyle\Phi_a(x) $ must therefore be a minimal, irreducible polynomial of $ \scriptstyle\zeta_a $. This is important. Return here to see why it must be minimal for $ \scriptstyle\zeta_a $ over $ \scriptstyle\mathbb{Q} $.

Now, remember that $ \scriptstyle a\mid n $. This implies that for some positive integer $ \scriptstyle b $, $ \scriptstyle n\ =\ ab $.

$ \scriptstyle\Rightarrow\ \zeta_a^n\ =\ \zeta_a^{ab}\ =\ (\zeta_a^a)^b\ =\ 1^b\ =\ 1 $. This means that $ \scriptstyle\zeta_a $ is actually an $ \scriptstyle n $-th root of unity as well! What does this mean? Recall that a number $ \scriptstyle r $ is an $ \scriptstyle n $-th root of unity if $ \scriptstyle r^n\ =\ 1 $. But that is equivalent to saying that $ \scriptstyle r $ is a zero of the polynomial $ \scriptstyle x^n-1 $. So, since $ \scriptstyle\Phi_a(x) $ is the minimal polynomial over the primitive $ \scriptstyle a $-th root of unity $ \scriptstyle\zeta_a $, $ \scriptstyle\Phi_a(x) $ must therefore divide $ \scriptstyle x^n-1 $.

Now return to the polynomial $ \scriptstyle\frac{x^n-1}{x-1} $. We know that if $ \scriptstyle n $ is composite, there exists a divisor $ \scriptstyle a\geq2 $ such that $ \scriptstyle a\mid n $. We now also know that this implies that $ \scriptstyle\Phi_a(x)\textstyle\mid\scriptstyle\frac{x^n-1}{x-1} $.

It follows that $ \scriptstyle\frac{x^n-1}{x-1} $ can be expressed as a product $ \scriptstyle\Phi_a(x)\cdot g(x) $ for some $ \scriptstyle g(x) $. It therefore must be reducible over $ \scriptstyle\mathbb{Q} $. $ \scriptstyle\Box $


For futher clarification, look at $ \scriptstyle f(x)\ =\ \frac{x^6-1}{x-1} $ for an example. We know that $ \scriptstyle2\mid6 $, so $ \scriptstyle\Phi_2(x)\ =\ x+1 $ must divide $ \scriptstyle\frac{x^6-1}{x-1}\ =\ x^5+x^4+x^3+x^2+x+1 $. By long division:

    $ \scriptstyle x^4\ \ \ +x^2\ \ \ \ \ +1 $

$ \scriptstyle x+1)\overline{x^5+x^4+x^3+x^2+x+1} $

  $ \scriptstyle-\underline{x^5+x^4} $
      $ \scriptstyle0\ +x^3+x^2 $
       $ \scriptstyle-\ \underline{x^3+x^2} $
            $ \scriptstyle0\ +x+1 $
             $ \scriptstyle-\ \underline{x+1} $
                 $ \scriptstyle0 $

So, $ \scriptstyle\frac{x^6-1}{x-1}\ =\ \Phi_2(x)\cdot(x^4+x^2+1) $, and is clearly reducible over $ \scriptstyle\mathbb{Q} $. $ \scriptstyle\checkmark $

(By the way, Chapter 33 in the book will help a lot too if you're still confused; it focuses completely on cyclotomic field extensions.)

--Nick Rupley 01:58, 9 April 2009 (UTC)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn