(Confidence Intervals, and how to get them via Chebyshev)
 
(61 intermediate revisions by 16 users not shown)
Line 1: Line 1:
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
[[Category:cheat sheet]]
 +
 +
=[[ECE302]] Cheat Sheet number 3=
 
==Covariance==
 
==Covariance==
 
* <math>COV(X,Y)=E[(X-E[X])(Y-E[Y])]\!</math>
 
* <math>COV(X,Y)=E[(X-E[X])(Y-E[Y])]\!</math>
 
* <math>COV(X,Y)=E[XY]-E[X]E[Y]\!</math>
 
* <math>COV(X,Y)=E[XY]-E[X]E[Y]\!</math>
 +
 +
 +
X and Y are uncorrelated if cov(X,Y) = 0
 +
 +
 +
If X and Y are independent, they are uncorrelated. The converse is not always true.
 +
 +
If either RV X or Y is multiplied by a large constant, then the magnitude of the covariance will also increase. A measure of correlation in an absolute scale is the correlation coefficient.
  
 
==Correlation Coefficient==
 
==Correlation Coefficient==
  
 
<math>\rho(X,Y)= \frac {cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}} \,</math>
 
<math>\rho(X,Y)= \frac {cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}} \,</math>
 +
<math>  = \frac{E[XY]-E[X]E[Y]}{\sqrt{var(X)} \sqrt{var(Y)}} </math>
 +
 +
-1 <= <math>\rho(X,Y) <= 1  </math>
 +
 +
If <math>\rho(X,Y) = 0</math> then x, y are uncorrelated
 +
 +
If <math>\rho(X,Y) = 1 or -1 </math> then x,y are very correlated
  
 
==Markov Inequality==
 
==Markov Inequality==
Line 11: Line 32:
 
* <math>P(X \geq a) \leq E[X]/a\!</math>   
 
* <math>P(X \geq a) \leq E[X]/a\!</math>   
 
for all a > 0
 
for all a > 0
 +
 +
 +
EXAMPLE:
 +
 +
On average it takes 1 hour to catch a fish. What is (an upper bound) the probability it will take 3 hours?
 +
 +
SOLUTION:
 +
 +
Using Markov's inequality, where <math>E[X]\!</math> = 1 and a = 3.
 +
 +
<math> P(X \geq 3) \leq \frac {E[X]}{3} = \frac{1}{3}</math>
 +
 +
so 1/3 is the upper bound to the probability that it will take more than 3 hours to catch a fish.
  
 
==Chebyshev Inequality==
 
==Chebyshev Inequality==
Line 20: Line 54:
 
The weak law of large numbers states that the sample average converges in probability towards the expected value
 
The weak law of large numbers states that the sample average converges in probability towards the expected value
 
:<math>\overline{X}_n \, \xrightarrow{P} \, \mu \qquad\textrm{for}\qquad n \to \infty.</math>
 
:<math>\overline{X}_n \, \xrightarrow{P} \, \mu \qquad\textrm{for}\qquad n \to \infty.</math>
 +
 +
Mn = (X1 + ... + Xn)/n = X1/n + ... + Xn/n
 +
 +
E[Mn] = nE[X]/n = E[X]
 +
 +
Var[Mn] = Var(X1/n) + ... + Var(Xn/n) = Var(X)/n
 +
 +
Pr[ |Mn - E[X]| ] >= Var(Mn)/<math> \sigma^2 = Var(X)/n\sigma^2 </math>
  
 
==ML Estimation Rule==
 
==ML Estimation Rule==
Line 25: Line 67:
  
 
<math>\hat a_{ML} = \text{max}_a ( Pr(x_i;a))</math> discrete
 
<math>\hat a_{ML} = \text{max}_a ( Pr(x_i;a))</math> discrete
 +
 +
 +
If X is a binomial (n,p), where is X is number of heads n tosses,
 +
Then, for any fixed k-value;
 +
 +
<math>\hat p_{ML}(k) = k/n</math>
 +
 +
If X is exponential then it's ML estimate is:
 +
 +
<math> \frac{1}{ \overline{X}} </math>
  
 
==MAP Estimation Rule==
 
==MAP Estimation Rule==
Line 33: Line 85:
  
 
<math>\hat \theta_{MAP} = \text{argmax}_\theta ( f_{X|\theta}(x|\theta)f_{\theta}(\theta))</math>
 
<math>\hat \theta_{MAP} = \text{argmax}_\theta ( f_{X|\theta}(x|\theta)f_{\theta}(\theta))</math>
 +
 +
for discrete case:
 +
 +
<math>\hat \theta_{MAP} = \text{argmax}_\theta ( P_{X|\theta}(x|\theta)P_{\theta}(\theta))</math>
  
 
==Bias of an Estimator, and Unbiased estimators==
 
==Bias of an Estimator, and Unbiased estimators==
Line 38: Line 94:
 
An estimator is unbiased if:
 
An estimator is unbiased if:
 
<math>E[\hat a_{ML}] = a</math> for all values of a
 
<math>E[\hat a_{ML}] = a</math> for all values of a
 +
 +
 +
 +
'''A biased estimator can be made unbiased ''' :  Let an event X be uniform from (0,a). Now <math>E[\hat a_{ML}] = a</math> = E[X] = a/2,which makes it biased as it is not equal to a. Now we can make <math>E[\hat a_{ML}]= a</math>      if    a^{ML}=2x,  which  makes  it unbiased.
  
 
==Confidence Intervals, and how to get them via Chebyshev==
 
==Confidence Intervals, and how to get them via Chebyshev==
  
* <math>\theta \text is unknown and fixed
+
<math> \theta \text{ is unknown and fixed}</math>
* <math>\hat \theta \text is random and should be close to <math>\theta \text most of the time
+
* \text if Pr[abs(<math>\hat \theta - <math>\theta) <= E] >= (1-a) \text then we say we have (1-a) confidence in the interval [<math>\hat \theta -E, <math>\hat \theta + E]
+
  
 +
<math>\hat \theta \text{ is random and should be close to } \theta \text{ most of the time}</math>
  
==MAP Estimation Rule==
+
<math> if Pr[|\hat \theta \text{-} \theta|] <= (1-a) \text { then we say we have (1-a) confidence in the interval } [\hat \theta - E, \hat \theta + E]</math>
  
<math>\hat \theta_{MAP} = \text{argmax}_\theta ( f_{\theta|X}(\theta|x))</math>
 
  
Which can be expanded and turned into the following (if I am not mistaken):
+
Confidence level of <math> (1-a) </math> if <math>Pr[\hat \theta \text{-} \delta < \theta < \hat \theta + \delta] >= (1-a)
 +
for  all \theta</math>
  
<math>\hat \theta_{MAP} = \text{argmax}_\theta ( f_{X|\theta}(x|\theta)f_{\theta}(\theta))</math>
+
==Definition of the term Unbiased estimators==
 +
 
 +
The ML estimator is said to be UNBIASED if its expected value is the true value for all true values.
 +
 
 +
(ie, A estimate <math>\hat \theta</math> for parameter <math>\theta</math> is said to be unbiased if <math>\forall \theta \text{(where }\theta\text{ exists)}, E(\hat \theta) = \theta</math>)
 +
 
 +
==Few equations from previous material==
 +
 
 +
::X and Y are independent
 +
 
 +
*<math>E[X] = \int^\infty_{-\infty}x*f_X(x)dx\!</math>
 +
 
 +
*<math>E[XY] = E[X]E[Y]\!</math>
 +
 
 +
*<math>Var(X) = E[X^2] - (E[X])^2\!</math>
 +
 
 +
Marginal PDF
 +
 
 +
*<math>E(g(x))=\int^\infty_{-\infty} g(x)f_X(x,y) dy</math>
 +
 
 +
*<math>f_X(x) = \int^\infty_{-\infty} f_{XY}(x,y) dy</math>
 +
 
 +
*<math>f_Y(y) = \int^\infty_{-\infty} f_{XY}(x,y) dx</math>
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 12:06, 22 November 2011


ECE302 Cheat Sheet number 3

Covariance

  • $ COV(X,Y)=E[(X-E[X])(Y-E[Y])]\! $
  • $ COV(X,Y)=E[XY]-E[X]E[Y]\! $


X and Y are uncorrelated if cov(X,Y) = 0


If X and Y are independent, they are uncorrelated. The converse is not always true.

If either RV X or Y is multiplied by a large constant, then the magnitude of the covariance will also increase. A measure of correlation in an absolute scale is the correlation coefficient.

Correlation Coefficient

$ \rho(X,Y)= \frac {cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}} \, $ $ = \frac{E[XY]-E[X]E[Y]}{\sqrt{var(X)} \sqrt{var(Y)}} $

-1 <= $ \rho(X,Y) <= 1 $

If $ \rho(X,Y) = 0 $ then x, y are uncorrelated

If $ \rho(X,Y) = 1 or -1 $ then x,y are very correlated

Markov Inequality

Loosely speaking: In a nonnegative RV has a small mean, then the probability that it takes a large value must also be small.

  • $ P(X \geq a) \leq E[X]/a\! $

for all a > 0


EXAMPLE:

On average it takes 1 hour to catch a fish. What is (an upper bound) the probability it will take 3 hours?

SOLUTION:

Using Markov's inequality, where $ E[X]\! $ = 1 and a = 3.

$ P(X \geq 3) \leq \frac {E[X]}{3} = \frac{1}{3} $

so 1/3 is the upper bound to the probability that it will take more than 3 hours to catch a fish.

Chebyshev Inequality

"Any RV is likely to be close to its mean"

$ \Pr(\left|X-E[X]\right|\geq C)\leq\frac{var(X)}{C^2}. $

Weak Law of Large Numbers

The weak law of large numbers states that the sample average converges in probability towards the expected value

$ \overline{X}_n \, \xrightarrow{P} \, \mu \qquad\textrm{for}\qquad n \to \infty. $

Mn = (X1 + ... + Xn)/n = X1/n + ... + Xn/n

E[Mn] = nE[X]/n = E[X]

Var[Mn] = Var(X1/n) + ... + Var(Xn/n) = Var(X)/n

Pr[ |Mn - E[X]| ] >= Var(Mn)/$ \sigma^2 = Var(X)/n\sigma^2 $

ML Estimation Rule

$ \hat a_{ML} = \text{max}_a ( f_{X}(x_i;a)) $ continuous

$ \hat a_{ML} = \text{max}_a ( Pr(x_i;a)) $ discrete


If X is a binomial (n,p), where is X is number of heads n tosses, Then, for any fixed k-value;

$ \hat p_{ML}(k) = k/n $

If X is exponential then it's ML estimate is:

$ \frac{1}{ \overline{X}} $

MAP Estimation Rule

$ \hat \theta_{MAP} = \text{argmax}_\theta ( f_{\theta|X}(\theta|x)) $

Which can be expanded and turned into the following (if I am not mistaken):

$ \hat \theta_{MAP} = \text{argmax}_\theta ( f_{X|\theta}(x|\theta)f_{\theta}(\theta)) $

for discrete case:

$ \hat \theta_{MAP} = \text{argmax}_\theta ( P_{X|\theta}(x|\theta)P_{\theta}(\theta)) $

Bias of an Estimator, and Unbiased estimators

An estimator is unbiased if: $ E[\hat a_{ML}] = a $ for all values of a


A biased estimator can be made unbiased  : Let an event X be uniform from (0,a). Now $ E[\hat a_{ML}] = a $ = E[X] = a/2,which makes it biased as it is not equal to a. Now we can make $ E[\hat a_{ML}]= a $ if a^{ML}=2x, which makes it unbiased.

Confidence Intervals, and how to get them via Chebyshev

$ \theta \text{ is unknown and fixed} $

$ \hat \theta \text{ is random and should be close to } \theta \text{ most of the time} $

$ if Pr[|\hat \theta \text{-} \theta|] <= (1-a) \text { then we say we have (1-a) confidence in the interval } [\hat \theta - E, \hat \theta + E] $


Confidence level of $ (1-a) $ if $ Pr[\hat \theta \text{-} \delta < \theta < \hat \theta + \delta] >= (1-a) for all \theta $

Definition of the term Unbiased estimators

The ML estimator is said to be UNBIASED if its expected value is the true value for all true values.

(ie, A estimate $ \hat \theta $ for parameter $ \theta $ is said to be unbiased if $ \forall \theta \text{(where }\theta\text{ exists)}, E(\hat \theta) = \theta $)

Few equations from previous material

X and Y are independent
  • $ E[X] = \int^\infty_{-\infty}x*f_X(x)dx\! $
  • $ E[XY] = E[X]E[Y]\! $
  • $ Var(X) = E[X^2] - (E[X])^2\! $

Marginal PDF

  • $ E(g(x))=\int^\infty_{-\infty} g(x)f_X(x,y) dy $
  • $ f_X(x) = \int^\infty_{-\infty} f_{XY}(x,y) dy $
  • $ f_Y(y) = \int^\infty_{-\infty} f_{XY}(x,y) dx $

Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett