(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
[[Category:lecture notes]]
 +
 +
=MAP Estimation by Landis=
 +
-----------------
 +
==The Big Picture==
 +
 
Given observation X used to estimate an unknown parameter <math>\theta</math> of distribution <math>f_x(X)</math>
 
Given observation X used to estimate an unknown parameter <math>\theta</math> of distribution <math>f_x(X)</math>
 
(i.e. <math>f_x(X) = </math> some function <math>g(\theta)</math>
 
(i.e. <math>f_x(X) = </math> some function <math>g(\theta)</math>
Line 36: Line 45:
 
<math>\overset{\land}\theta_{\mbox{map}} = \overset{\mbox{argmax}}\theta f_{X | \theta}(X | \theta) F_\theta(\theta)</math>
 
<math>\overset{\land}\theta_{\mbox{map}} = \overset{\mbox{argmax}}\theta f_{X | \theta}(X | \theta) F_\theta(\theta)</math>
  
== Example 1 ==
+
 
 +
===So What?===
 +
 
 +
So, what does this mean in a nutshell?  Essentially, an <b>ML estimator</b> is as follows: "I know that a random variable follows some sort of pattern, and this pattern can be adjusted by changing a variable called a parameter.  (I have <i>no clue</i> what this parameter should be.)  I run some experiment to get a sample output from the random variable.  Based on my experiment, I would like to find the pattern for the random variable that best matches my data.  So, I will find the pattern that gives my data the <i>most likely</i> chance of occuring."
 +
 
 +
A <b>MAP estimator</b> is as follows: "I know that a random variable follows some sort of pattern, and this pattern can be adjusted by changing a variable called a parameter.  (I have <i>some idea</i> what this parameter should be, so I will treat the parameter as a random variable.  Then, the chance that the parameter will have some value will be expressed by it's PDF/PMF.)  I run some experiment to get a sample output from the random variable.  Based on my experiment <i>and</i> on my prior ideas of what the parameter should be, I would like to find the pattern that best matches both my data and my prior knowledge.  So, I will find the pattern that maximizes the product of two things: how well the parameter matches the data, and how well the parameter meets my expectations of what the parameter should be."
 +
 
 +
 
 +
== Example 1: Continuous ==
  
 
<math>X \sim f_x(X) = \lambda e^{-\lambda X}</math>
 
<math>X \sim f_x(X) = \lambda e^{-\lambda X}</math>
Line 57: Line 74:
  
 
<math>\frac{d}{d\lambda} \lambda \Lambda e^{-\lambda(\Lambda + X)} = 0</math>
 
<math>\frac{d}{d\lambda} \lambda \Lambda e^{-\lambda(\Lambda + X)} = 0</math>
 +
 +
<math>\Lambda e^{-\lambda}(\Lambda + X) - \lambda \Lambda (\Lambda + X) e^{-\lambda(\lambda + X)} = 0</math>
 +
 +
<math>1 - \lambda(\Lambda + X) = 0</math>
 +
 +
<math>\overset{\land}X_{\mbox{map}} = \frac{1}{\Lambda + X}</math>
 +
 +
Recall from homework: <math>\overset{\land}X_{\mbox{ML}} = \frac{1}{X}</math>
 +
 +
Prior <math>f_{\lambda}(\lambda) = \Lambda e^{-\lambda \Lambda}</math>
 +
 +
== Example 2: Discrete ==
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 08:23, 10 May 2013


MAP Estimation by Landis


The Big Picture

Given observation X used to estimate an unknown parameter $ \theta $ of distribution $ f_x(X) $ (i.e. $ f_x(X) = $ some function $ g(\theta) $

Consider three expressions (distributions):

1. Likehood

$ p(X; \theta) $ (discrete)

$ f_x(X; \theta) $ (continuous)

used for MLE: $ \overset{\land}\theta_{ML} = f_x(X | \theta) $

2. Prior

$ P(\theta) $ (discrete)

$ P_\theta(\theta) $ (continuous)

Indicates some prior knowledge as to what $ \theta $ should be. Prior refers to before seeing observation.

3. Posterior

$ p(\theta | x) $ (discrete)

$ f_x(\theta, x) $ (continuous)

"Posterior" refers to after seeing observations. Use Posterior to define maximum a-posterior i (map) estimate:

$ \overset{\land}\theta_{\mbox{MAP}} = \overset{\mbox{argmax}}\theta f_{\theta | X}(\theta | X) $

Using Bayes' Rule, we can expand the posterior $ f_{\theta | X}(\theta | X) $:

$ f_{\theta | X}(\theta | X) = \frac{f_{x|\theta}f_\theta(\theta)}{f_X(X)} $

$ \overset{\land}\theta_{\mbox{map}} = \overset{\mbox{argmax}}\theta f_{X | \theta}(X | \theta) F_\theta(\theta) $


So What?

So, what does this mean in a nutshell? Essentially, an ML estimator is as follows: "I know that a random variable follows some sort of pattern, and this pattern can be adjusted by changing a variable called a parameter. (I have no clue what this parameter should be.) I run some experiment to get a sample output from the random variable. Based on my experiment, I would like to find the pattern for the random variable that best matches my data. So, I will find the pattern that gives my data the most likely chance of occuring."

A MAP estimator is as follows: "I know that a random variable follows some sort of pattern, and this pattern can be adjusted by changing a variable called a parameter. (I have some idea what this parameter should be, so I will treat the parameter as a random variable. Then, the chance that the parameter will have some value will be expressed by it's PDF/PMF.) I run some experiment to get a sample output from the random variable. Based on my experiment and on my prior ideas of what the parameter should be, I would like to find the pattern that best matches both my data and my prior knowledge. So, I will find the pattern that maximizes the product of two things: how well the parameter matches the data, and how well the parameter meets my expectations of what the parameter should be."


Example 1: Continuous

$ X \sim f_x(X) = \lambda e^{-\lambda X} $

but we don't know the parameter $ \lambda $. Let us assume, however, that $ \lambda $ is actually itself exponentially distributed, i.e.

$ \lambda \sim f_\lambda(\lambda) = \Lambda e^{-\Lambda\lambda} $

where $ \Lambda $ is fixed and known.

Find $ \overset{\land}\lambda_{\mbox{map}} $.

Solution:

$ \overset{\land}\lambda_{\mbox{map}} = \overset{\mbox{argmax}}\lambda f_{\lambda | X}(\lambda | X) $

$ \overset{\land}\lambda_{\mbox{map}} = \overset{\mbox{argmax}}\lambda f_x(\lambda)f_{x|\lambda}(x; \lambda) $

$ \overset{\land}\lambda_{\mbox{map}} = \overset{\mbox{argmax}}\lambda \Lambda e^{-\lambda \Lambda}\lambda e^{-\lambda X} $

$ \frac{d}{d\lambda} \lambda \Lambda e^{-\lambda(\Lambda + X)} = 0 $

$ \Lambda e^{-\lambda}(\Lambda + X) - \lambda \Lambda (\Lambda + X) e^{-\lambda(\lambda + X)} = 0 $

$ 1 - \lambda(\Lambda + X) = 0 $

$ \overset{\land}X_{\mbox{map}} = \frac{1}{\Lambda + X} $

Recall from homework: $ \overset{\land}X_{\mbox{ML}} = \frac{1}{X} $

Prior $ f_{\lambda}(\lambda) = \Lambda e^{-\lambda \Lambda} $

Example 2: Discrete


Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood