(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
=What is a Matrix=
 
A matrix can be thought of as an array of numbers. It is usually denoted by a capital letter (such as M), and each component (called an [[entry]]) can be denoted <math>M_{ij}</math> where i is the row number (starting from 1) and j is the column number (starting from 1). A matrix can have any number of rows and columns, depending on the context. When referring to an arbitrary matrix of a given size i rows by j columns it can be denoted <math>M_{ixj}</math>
 
A matrix can be thought of as an array of numbers. It is usually denoted by a capital letter (such as M), and each component (called an [[entry]]) can be denoted <math>M_{ij}</math> where i is the row number (starting from 1) and j is the column number (starting from 1). A matrix can have any number of rows and columns, depending on the context. When referring to an arbitrary matrix of a given size i rows by j columns it can be denoted <math>M_{ixj}</math>
  
Line 12: Line 13:
 
* represent a [[basis]] of vectors
 
* represent a [[basis]] of vectors
 
* represent information where [[matrix multiplication]] has a meaning attached (Examples include a [[permutation matrix]] and an [[adjacency matrix]])
 
* represent information where [[matrix multiplication]] has a meaning attached (Examples include a [[permutation matrix]] and an [[adjacency matrix]])
 +
----
 +
[[Linear_Algebra_Resource|Back to Linear Algebra Resource]]
 +
 +
[[MA351|Back to MA351]]
 +
[[Category:MA351]]

Latest revision as of 04:49, 18 August 2010

What is a Matrix

A matrix can be thought of as an array of numbers. It is usually denoted by a capital letter (such as M), and each component (called an entry) can be denoted $ M_{ij} $ where i is the row number (starting from 1) and j is the column number (starting from 1). A matrix can have any number of rows and columns, depending on the context. When referring to an arbitrary matrix of a given size i rows by j columns it can be denoted $ M_{ixj} $

For example, the following is a 2x3 matrix: $ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} $


A matrix can be used to


Back to Linear Algebra Resource

Back to MA351

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett