(New page: <math> \delta(t) = \lim_{\epsilon\rightarrow0} \frac{1}{\epsilon}\left[u(t+\epsilon/2) - u(t-\epsilon/2)\right], </math> where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1<...)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
=Definition of the Dirac Delta Distribution=
 
<math>
 
<math>
 
\delta(t) = \lim_{\epsilon\rightarrow0}
 
\delta(t) = \lim_{\epsilon\rightarrow0}
Line 5: Line 6:
  
 
where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1</math> for <math>t\geq0</math>
 
where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1</math> for <math>t\geq0</math>
 +
 +
[[Category:ECE301Spring2009lehnert]]
 +
[[Category:Delta Function]]

Latest revision as of 10:11, 30 January 2011

Definition of the Dirac Delta Distribution

$ \delta(t) = \lim_{\epsilon\rightarrow0} \frac{1}{\epsilon}\left[u(t+\epsilon/2) - u(t-\epsilon/2)\right], $

where $ u(t) = 0 $ for $ t<0 $ and $ u(t)=1 $ for $ t\geq0 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood