(New page: <math> \delta(t) = \lim_{\epsilon\rightarrow0} \frac{1}{\epsilon}\left[u(t+\epsilon/2) - u(t-\epsilon/2)\right], </math> where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1<...) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | =Definition of the Dirac Delta Distribution= | ||
<math> | <math> | ||
\delta(t) = \lim_{\epsilon\rightarrow0} | \delta(t) = \lim_{\epsilon\rightarrow0} | ||
Line 5: | Line 6: | ||
where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1</math> for <math>t\geq0</math> | where <math>u(t) = 0</math> for <math>t<0</math> and <math>u(t)=1</math> for <math>t\geq0</math> | ||
+ | |||
+ | [[Category:ECE301Spring2009lehnert]] | ||
+ | [[Category:Delta Function]] |
Latest revision as of 10:11, 30 January 2011
Definition of the Dirac Delta Distribution
$ \delta(t) = \lim_{\epsilon\rightarrow0} \frac{1}{\epsilon}\left[u(t+\epsilon/2) - u(t-\epsilon/2)\right], $
where $ u(t) = 0 $ for $ t<0 $ and $ u(t)=1 $ for $ t\geq0 $