(New page: Do we have to prove G is either cyclic or non-cyclic to find out whether it is Abelian?)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
Do we have to prove G is either cyclic or non-cyclic to find out whether it is Abelian?
 
Do we have to prove G is either cyclic or non-cyclic to find out whether it is Abelian?
 +
<br><br>
 +
I believe the examples on p178 help with this problem
 +
 +
----
 +
 +
You need only show a counterexample to the claim: "Given a normal Abelian subgroup <math>\scriptstyle H</math> of <math>\scriptstyle G</math> such that <math>\scriptstyle G/H</math> is Abelian, <math>\scriptstyle G</math> must also be Abelian." The book cites <math>\scriptstyle D_3</math> as such a counterexample.
 +
 +
<math>\scriptstyle D_3</math> has the following 6 elements:<br>
 +
<math>\scriptstyle R_0\,\,:\,\,ABC\to ABC\,\,\,\,R_{120}\,\,:\,\,ABC\to CAB\,\,\,\,R_{240}\,\,:\,\,ABC\to BCA</math><br>
 +
<math>\scriptstyle F_1\,\,:\,\,ABC\to CBA\,\,\,\,F_2\,\,:\,\,ABC\to BAC\,\,\,\,F_3\,\,:\,\,ABC\to ACB</math>
 +
 +
Its Cayley table is:
 +
 +
<table border="15">
 +
<tr>
 +
  <td><math>\textstyle D_3</math></td>
 +
  <td BGCOLOR=#000000>&nbsp;</td>
 +
  <td><math>\textstyle R_0</math></td>
 +
  <td><math>\textstyle R_{120}</math></td>
 +
  <td><math>\textstyle R_{240}</math></td>
 +
  <td><math>\textstyle F_1</math></td>
 +
  <td><math>\textstyle F_2</math></td>
 +
  <td><math>\textstyle F_3</math></td>
 +
</tr>
 +
<tr>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
</tr>
 +
<tr>
 +
  <td><math>\textstyle R_0</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle R_0</math></td>
 +
  <td><math>\scriptstyle R_{120}</math></td>
 +
  <td><math>\scriptstyle R_{240}</math></td>
 +
  <td><math>\scriptstyle F_1</math></td>
 +
  <td><math>\scriptstyle F_2</math></td>
 +
  <td><math>\scriptstyle F_3</math></td>
 +
</tr>
 +
<tr>
 +
  <td><math>\textstyle R_{120}</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle R_{120}</math></td>
 +
  <td><math>\scriptstyle R_{240}</math></td>
 +
  <td><math>\scriptstyle R_0</math></td>
 +
  <td><math>\scriptstyle F_2</math></td>
 +
  <td><math>\scriptstyle F_3</math></td>
 +
  <td><math>\scriptstyle F_1</math></td>
 +
</tr>
 +
<tr>
 +
  <td><math>\textstyle R_{240}</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle R_{240}</math></td>
 +
  <td><math>\scriptstyle R_0</math></td>
 +
  <td><math>\scriptstyle R_{120}</math></td>
 +
  <td><math>\scriptstyle F_3</math></td>
 +
  <td><math>\scriptstyle F_1</math></td>
 +
  <td><math>\scriptstyle F_2</math></td>
 +
</tr>
 +
<tr>
 +
  <td><math>\textstyle F_1</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle F_1</math></td>
 +
  <td><math>\scriptstyle F_3</math></td>
 +
  <td><math>\scriptstyle F_2</math></td>
 +
  <td><math>\scriptstyle R_0</math></td>
 +
  <td><math>\scriptstyle R_{240}</math></td>
 +
  <td><math>\scriptstyle R_{120}</math></td>
 +
</tr>
 +
<tr>
 +
  <td><math>\textstyle F_2</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle F_2</math></td>
 +
  <td><math>\scriptstyle F_1</math></td>
 +
  <td><math>\scriptstyle F_3</math></td>
 +
  <td><math>\scriptstyle R_{120}</math></td>
 +
  <td><math>\scriptstyle R_0</math></td>
 +
  <td><math>\scriptstyle R_{240}</math></td>
 +
</tr>
 +
<tr>
 +
  <td><math>\textstyle F_3</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle F_3</math></td>
 +
  <td><math>\scriptstyle F_2</math></td>
 +
  <td><math>\scriptstyle F_1</math></td>
 +
  <td><math>\scriptstyle R_{240}</math></td>
 +
  <td><math>\scriptstyle R_{120}</math></td>
 +
  <td><math>\scriptstyle R_0</math></td>
 +
</tr>
 +
</table>
 +
 +
Let <math>\scriptstyle H = \{R_0,R_{120},R_{240}\}</math>. From the Cayley table of <math>\scriptstyle D_3</math>, it's clear that <math>\scriptstyle H</math> is Abelian. <math>\scriptstyle|D_3:H|\,=\,2</math>, so we know that <math>\scriptstyle H\triangleleft D_3</math> (we proved this in the previous exercise). <math>\scriptstyle D_3/H</math> is then <math>\scriptstyle \{H,F_1H\}</math>. The Cayley table for <math>\scriptstyle D_3/H</math> is:
 +
 +
<table border="10">
 +
<tr>
 +
  <td><math>\scriptstyle D_3/H</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle H</math></td>
 +
  <td><math>\scriptstyle F_1H</math>
 +
</tr>
 +
<tr>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td BGCOLOR=#000000></td>
 +
</tr>
 +
<tr>
 +
  <td><math>\scriptstyle H</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle H</math></td>
 +
  <td><math>\scriptstyle F_1H</math>
 +
</tr>
 +
<tr>
 +
  <td><math>\scriptstyle F_1H</math></td>
 +
  <td BGCOLOR=#000000></td>
 +
  <td><math>\scriptstyle F_1H</math></td>
 +
  <td><math>\scriptstyle H</math>
 +
</tr>
 +
</table>
 +
 +
From this, it is obvious that <math>\scriptstyle D_3/H</math> is also Abelian. However, <math>\scriptstyle D_3</math> is not Abelian. For example, <math>\scriptstyle R_{120}F_1\,\,=\,\,F_2</math>, but <math>\scriptstyle F_1R_{120}\,\,=\,\,F_3</math>. Thus, given a normal Abelian subgroup <math>\scriptstyle H</math> of <math>\scriptstyle G</math> such that <math>\scriptstyle G/H</math> is Abelian, <math>\scriptstyle G</math> need not be Abelian as well. <math>\scriptstyle \Box</math>
 +
 +
:--[[User:Narupley|Nick Rupley]] 03:04, 2 October 2008 (UTC)

Latest revision as of 22:04, 1 October 2008

Do we have to prove G is either cyclic or non-cyclic to find out whether it is Abelian?

I believe the examples on p178 help with this problem


You need only show a counterexample to the claim: "Given a normal Abelian subgroup $ \scriptstyle H $ of $ \scriptstyle G $ such that $ \scriptstyle G/H $ is Abelian, $ \scriptstyle G $ must also be Abelian." The book cites $ \scriptstyle D_3 $ as such a counterexample.

$ \scriptstyle D_3 $ has the following 6 elements:
$ \scriptstyle R_0\,\,:\,\,ABC\to ABC\,\,\,\,R_{120}\,\,:\,\,ABC\to CAB\,\,\,\,R_{240}\,\,:\,\,ABC\to BCA $
$ \scriptstyle F_1\,\,:\,\,ABC\to CBA\,\,\,\,F_2\,\,:\,\,ABC\to BAC\,\,\,\,F_3\,\,:\,\,ABC\to ACB $

Its Cayley table is:

$ \textstyle D_3 $   $ \textstyle R_0 $ $ \textstyle R_{120} $ $ \textstyle R_{240} $ $ \textstyle F_1 $ $ \textstyle F_2 $ $ \textstyle F_3 $
$ \textstyle R_0 $ $ \scriptstyle R_0 $ $ \scriptstyle R_{120} $ $ \scriptstyle R_{240} $ $ \scriptstyle F_1 $ $ \scriptstyle F_2 $ $ \scriptstyle F_3 $
$ \textstyle R_{120} $ $ \scriptstyle R_{120} $ $ \scriptstyle R_{240} $ $ \scriptstyle R_0 $ $ \scriptstyle F_2 $ $ \scriptstyle F_3 $ $ \scriptstyle F_1 $
$ \textstyle R_{240} $ $ \scriptstyle R_{240} $ $ \scriptstyle R_0 $ $ \scriptstyle R_{120} $ $ \scriptstyle F_3 $ $ \scriptstyle F_1 $ $ \scriptstyle F_2 $
$ \textstyle F_1 $ $ \scriptstyle F_1 $ $ \scriptstyle F_3 $ $ \scriptstyle F_2 $ $ \scriptstyle R_0 $ $ \scriptstyle R_{240} $ $ \scriptstyle R_{120} $
$ \textstyle F_2 $ $ \scriptstyle F_2 $ $ \scriptstyle F_1 $ $ \scriptstyle F_3 $ $ \scriptstyle R_{120} $ $ \scriptstyle R_0 $ $ \scriptstyle R_{240} $
$ \textstyle F_3 $ $ \scriptstyle F_3 $ $ \scriptstyle F_2 $ $ \scriptstyle F_1 $ $ \scriptstyle R_{240} $ $ \scriptstyle R_{120} $ $ \scriptstyle R_0 $

Let $ \scriptstyle H = \{R_0,R_{120},R_{240}\} $. From the Cayley table of $ \scriptstyle D_3 $, it's clear that $ \scriptstyle H $ is Abelian. $ \scriptstyle|D_3:H|\,=\,2 $, so we know that $ \scriptstyle H\triangleleft D_3 $ (we proved this in the previous exercise). $ \scriptstyle D_3/H $ is then $ \scriptstyle \{H,F_1H\} $. The Cayley table for $ \scriptstyle D_3/H $ is:

$ \scriptstyle D_3/H $ $ \scriptstyle H $ $ \scriptstyle F_1H $
$ \scriptstyle H $ $ \scriptstyle H $ $ \scriptstyle F_1H $
$ \scriptstyle F_1H $ $ \scriptstyle F_1H $ $ \scriptstyle H $

From this, it is obvious that $ \scriptstyle D_3/H $ is also Abelian. However, $ \scriptstyle D_3 $ is not Abelian. For example, $ \scriptstyle R_{120}F_1\,\,=\,\,F_2 $, but $ \scriptstyle F_1R_{120}\,\,=\,\,F_3 $. Thus, given a normal Abelian subgroup $ \scriptstyle H $ of $ \scriptstyle G $ such that $ \scriptstyle G/H $ is Abelian, $ \scriptstyle G $ need not be Abelian as well. $ \scriptstyle \Box $

--Nick Rupley 03:04, 2 October 2008 (UTC)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood