(One intermediate revision by one other user not shown)
Line 28: Line 28:
  
 
"... is the superset of..." :: <math>\supseteq</math>
 
"... is the superset of..." :: <math>\supseteq</math>
 +
 +
 +
p/s: Feel free to add more...
 +
 +
'''Factor Groups:'''
 +
 +
<math>G/H</math>: Let <math>H</math> be a normal subgroup of group <math>G</math>.  Then <math>G/H = \{aH|a \in G\}</math> is a group under operation <math>(aH)(bH) = abH</math>.

Latest revision as of 09:27, 5 October 2008

Mathematics Symbols


Sets of Numbers:


Natural Numbers $ : \mathbb{N} $

Rational Numbers $ : \mathbb{Q} $

Real Numbers $ : \mathbb{R} $

Complex Numbers $ : \mathbb{C} $

Integers $ : \mathbb{Z} $


Operations/Quantifiers:


"There exists..." :: $ \exists $

"... for all..." :: $ \forall $

"... is an element ... " :: $ \in $

"... is the subset of ..." :: $ \subseteq $

"... is the superset of..." :: $ \supseteq $


p/s: Feel free to add more...

Factor Groups:

$ G/H $: Let $ H $ be a normal subgroup of group $ G $. Then $ G/H = \{aH|a \in G\} $ is a group under operation $ (aH)(bH) = abH $.

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin