(One intermediate revision by one other user not shown) | |||
Line 28: | Line 28: | ||
"... is the superset of..." :: <math>\supseteq</math> | "... is the superset of..." :: <math>\supseteq</math> | ||
+ | |||
+ | |||
+ | p/s: Feel free to add more... | ||
+ | |||
+ | '''Factor Groups:''' | ||
+ | |||
+ | <math>G/H</math>: Let <math>H</math> be a normal subgroup of group <math>G</math>. Then <math>G/H = \{aH|a \in G\}</math> is a group under operation <math>(aH)(bH) = abH</math>. |
Latest revision as of 09:27, 5 October 2008
Mathematics Symbols
Sets of Numbers:
Natural Numbers $ : \mathbb{N} $
Rational Numbers $ : \mathbb{Q} $
Real Numbers $ : \mathbb{R} $
Complex Numbers $ : \mathbb{C} $
Integers $ : \mathbb{Z} $
Operations/Quantifiers:
"There exists..." :: $ \exists $
"... for all..." :: $ \forall $
"... is an element ... " :: $ \in $
"... is the subset of ..." :: $ \subseteq $
"... is the superset of..." :: $ \supseteq $
p/s: Feel free to add more...
Factor Groups:
$ G/H $: Let $ H $ be a normal subgroup of group $ G $. Then $ G/H = \{aH|a \in G\} $ is a group under operation $ (aH)(bH) = abH $.