(New page: Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime. <math> 7*n + 4 = 5*n + 3 + 2*n + 1 5*n + 3 = 2*(2*n + 1) + n + 1 2*n + 1 = 1*(n + 1) + n n + 1 = 1*n + 1...)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
=[[HW1_MA453Fall2008walther|HW1]], Chapter 0, Problem 14, [[MA453]], Fall 2008, [[user:walther|Prof. Walther]]=
 +
==Problem Statement==
 
Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 
Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
<math>
+
 
7*n + 4 = 5*n + 3 + 2*n + 1
+
----
5*n + 3 = 2*(2*n + 1) + n + 1
+
==Discussion==
2*n + 1 = 1*(n + 1) + n
+
 
n + 1  = 1*n + 1
+
Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
</math>
+
 
 +
<math>7*n + 4 = 5*n + 3 + 2*n + 1</math>
 +
 
 +
<math>5*n + 3 = 2*(2*n + 1) + n + 1</math>
 +
 
 +
<math>2*n + 1 = 1*(n + 1) + n</math>
 +
 
 +
<math>n + 1  = 1*n + 1</math>
 +
 
  
 
After constant long division we get to the base equation where there is still a remainder of 1.
 
After constant long division we get to the base equation where there is still a remainder of 1.
 
Therefore <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 
Therefore <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 +
 +
== Even easier would be to use the Euclidean Algorithm ==
 +
<math>gcd(5*n + 3, 7*n + 4) = gcd(5*n + 3, 2*n + 1)</math>
 +
<math>                      = gcd(3*n + 2, 2*n + 1)</math>
 +
<math>                      = gcd(n + 1, 2*n + 1)</math>
 +
<math>                      = gcd(n + 1, n)</math>
 +
<math>                      = gcd(1, n)</math>
 +
<math>                      = 1</math>
 +
 +
Since the GCD of the two expressions is one for all n, they are relatively prime.
 +
----
 +
[[HW1_MA453Fall2008walther|Back to HW1]]
 +
 +
[[Main_Page_MA453Fall2008walther|Back to MA453 Fall 2008 Prof. Walther]]

Latest revision as of 16:49, 22 October 2010

HW1, Chapter 0, Problem 14, MA453, Fall 2008, Prof. Walther

Problem Statement

Show that $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.


Discussion

Show that $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.

$ 7*n + 4 = 5*n + 3 + 2*n + 1 $

$ 5*n + 3 = 2*(2*n + 1) + n + 1 $

$ 2*n + 1 = 1*(n + 1) + n $

$ n + 1 = 1*n + 1 $


After constant long division we get to the base equation where there is still a remainder of 1. Therefore $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.

Even easier would be to use the Euclidean Algorithm

$ gcd(5*n + 3, 7*n + 4) = gcd(5*n + 3, 2*n + 1) $ $ = gcd(3*n + 2, 2*n + 1) $ $ = gcd(n + 1, 2*n + 1) $ $ = gcd(n + 1, n) $ $ = gcd(1, n) $ $ = 1 $

Since the GCD of the two expressions is one for all n, they are relatively prime.


Back to HW1

Back to MA453 Fall 2008 Prof. Walther

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn