(Jesse's Favorite Theorem) |
m (Talk:Week1 moved to Jenny's Favorite theorem) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | My favorite theorem is the | + | My favorite theorm is the Fundamental theorem of Calculus because in calculus it seem to sum up everything that we learned. The fundamental theorem of Caluculus part one states Let f be a continuoues real function defined on a closed interval [a,b]. Let F be the function for all x in [a,b] by F(x)=Integral from a to x of f(t) dt. Then F is continuous on [a,b] and differental on the open interval (a,b) and F'(x)=f(x) for all x in (a,b). |
− | Let | + | Part Two states Let f be a continuous real function defined on a closed interval [a, b]. Let F be an antiderivative of f, for all x in [a, b], Then the integral from a to b of f(x) dx equals F(a)-F(b). |
− | + | ||
− | + | ||
− | + | Retrieved from "http://kiwi.ecn.purdue.edu/MA453Fall2008walther/index.php/User_talk:Jmcgowen" | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Latest revision as of 14:10, 1 September 2008
My favorite theorm is the Fundamental theorem of Calculus because in calculus it seem to sum up everything that we learned. The fundamental theorem of Caluculus part one states Let f be a continuoues real function defined on a closed interval [a,b]. Let F be the function for all x in [a,b] by F(x)=Integral from a to x of f(t) dt. Then F is continuous on [a,b] and differental on the open interval (a,b) and F'(x)=f(x) for all x in (a,b).
Part Two states Let f be a continuous real function defined on a closed interval [a, b]. Let F be an antiderivative of f, for all x in [a, b], Then the integral from a to b of f(x) dx equals F(a)-F(b).
Retrieved from "http://kiwi.ecn.purdue.edu/MA453Fall2008walther/index.php/User_talk:Jmcgowen"