(→Chapter 5: DT Fourier Transform) |
(→Chapter 7: Sampling) |
||
(8 intermediate revisions by 2 users not shown) | |||
Line 10: | Line 10: | ||
===[[Chapter 1_ECE301Fall2008mboutin]]: CT and DT Signals and Systems=== | ===[[Chapter 1_ECE301Fall2008mboutin]]: CT and DT Signals and Systems=== | ||
+ | #CT and DT Signals | ||
+ | #Transformations of the Independent Variable | ||
+ | #Exponential and Sinusoidal Signals | ||
+ | #The Unit Impulse and Unit Step Functions | ||
+ | #CT and DT Systems | ||
+ | #Basic System Properties | ||
+ | ##Memory | ||
+ | ##Invertibility and Inverse Systems | ||
+ | ##Causality | ||
+ | ##Stability | ||
+ | ##Time Invariance | ||
+ | ##Linearity | ||
+ | |||
===[[Chapter 2_ECE301Fall2008mboutin]]: Linear Time-Invariant Systems=== | ===[[Chapter 2_ECE301Fall2008mboutin]]: Linear Time-Invariant Systems=== | ||
+ | #Convolution in DT | ||
+ | #Convolution in CT | ||
+ | #LTI System Properties | ||
+ | ##Commutative | ||
+ | ##Distributive | ||
+ | ##Associative | ||
+ | ##LTI Systems Memory | ||
+ | ##LTI Invertibility | ||
+ | ##LTI Causality | ||
+ | ##LTI Stability | ||
+ | ##The Unit Step Response of an LTI System | ||
+ | #Causal LTI Systems Described by Differential and Difference Equations | ||
+ | |||
===[[Chapter 3_ECE301Fall2008mboutin]]: Fourier Series Representation of Period Signals=== | ===[[Chapter 3_ECE301Fall2008mboutin]]: Fourier Series Representation of Period Signals=== | ||
+ | DT Fourier Series Pair | ||
+ | |||
+ | :<math>x[n] = \sum_{k = <N>}a_ke^{jk\omega_0 n} = \sum_{k = <N>}a_ke^{jk(2\pi / N) n}</math> | ||
+ | :<math>a_k = \frac{1}{N}\sum_{k = <N>}x[n]e^{-jk\omega_0 n} = \frac{1}{N}\sum_{k = <N>}x[n]e^{-jk(2\pi /N) n}</math> | ||
+ | |||
+ | CT Fourier Series Pair | ||
+ | |||
+ | :<math>x(t) = \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0 t}= \sum_{k = -\infty}^{+\infty} a_k e^{jk(2\pi) /T t}</math> | ||
+ | :<math>a_k = \frac{1}{T}\int_{T} x(t)e^{-jk\omega_0 t}\, dt = \frac{1}{T}\int_{T} x(t)e^{-jk(2\pi /T) t}\, dt</math> | ||
+ | |||
+ | #Response of LTI Systems to Complex Exponentials | ||
+ | #FS Representations of CT Periodic Signals | ||
+ | #FS Representations of DT Periodic Signals | ||
+ | #Properties of FS | ||
+ | #FS and LTI Systems | ||
+ | #Filtering | ||
+ | |||
===[[Chapter 4_ECE301Fall2008mboutin]]: CT Fourier Transform=== | ===[[Chapter 4_ECE301Fall2008mboutin]]: CT Fourier Transform=== | ||
− | <math> \mathcal{X}(\omega) = \int_{-\infty}^{+\infty}x(t)e^{-j\omega t} \,dt </math> | + | :<math> \mathcal{X}(\omega) = \int_{-\infty}^{+\infty}x(t)e^{-j\omega t} \,dt </math> |
− | <math> x(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}\mathcal{X}(\omega)e^{j\omega t} \,dt </math> | + | :<math> x(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}\mathcal{X}(\omega)e^{j\omega t} \,dt </math> |
+ | |||
+ | #Representing Aperiodic Signals: CT Fourier Transform | ||
+ | #FT for Periodic Signals | ||
+ | #Properties of the CT FT | ||
+ | ## Linearity | ||
+ | ## Time Shifting | ||
+ | ## Conjugation and Conjugate Symmetry | ||
+ | ## Differentiating and Integrating | ||
+ | ## Time and Frequency Scaling | ||
+ | ## Duality | ||
+ | ## Parseval's Relationship | ||
+ | #The Convolution Property | ||
+ | #The Multiplication Property | ||
+ | #Systems Characterized by Linear Constant-Coefficient Differential Equations | ||
===[[Chapter 5_ECE301Fall2008mboutin]]: DT Fourier Transform=== | ===[[Chapter 5_ECE301Fall2008mboutin]]: DT Fourier Transform=== | ||
− | <math> X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n} </math> | + | :<math> X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n} </math> |
− | <math> x[n] = \frac{1}{2\pi}\int_{2\pi} X(e^{j\omega})e^{j\omega n} </math> | + | :<math> x[n] = \frac{1}{2\pi}\int_{2\pi} X(e^{j\omega})e^{j\omega n} </math> |
+ | |||
+ | #Representing Aperiodic Signals: DT Fourier Transform | ||
+ | #FT for Periodic Signals | ||
+ | #Properties of the CT FT | ||
+ | ## Periodicity of the Discrete-Time FT | ||
+ | ## Linearity | ||
+ | ## Time Shifting and Frequency Scaling | ||
+ | ## Conjugation and Conjugate Symmetry | ||
+ | ## Differencing and Accumulation | ||
+ | ## Time Reversal | ||
+ | ## Time Expansion | ||
+ | ## Differentiation in Frequency | ||
+ | ## Parseval's Relationship | ||
+ | #The Convolution Property | ||
+ | #The Multiplication Property | ||
+ | #Duality | ||
+ | #Systems Characterized by Linear Constant-Coefficient Difference Equations | ||
===[[Chapter 7_ECE301Fall2008mboutin]]: Sampling=== | ===[[Chapter 7_ECE301Fall2008mboutin]]: Sampling=== | ||
#'''Sampling''' | #'''Sampling''' | ||
##Impulse Train Sampling | ##Impulse Train Sampling | ||
− | ##The Sampling | + | ##The [[Sampling theorem_ECE301Fall2008mboutin]] and the Nyquist |
#'''Signal Reconstruction Using Interpolation:''' the fitting of a continuous signal to a set of sample values | #'''Signal Reconstruction Using Interpolation:''' the fitting of a continuous signal to a set of sample values | ||
##Sampling with a Zero-Order Hold (Horizontal Plateaus) | ##Sampling with a Zero-Order Hold (Horizontal Plateaus) | ||
Line 38: | Line 112: | ||
===[[Chapter 8_ECE301Fall2008mboutin]]: Communication Systems=== | ===[[Chapter 8_ECE301Fall2008mboutin]]: Communication Systems=== | ||
− | |||
#'''Complex Exponential and Sinusoidal Amplitude Modulation''' (You Can Hear the Music on the Amplitude Modulation Radio -''Everclear'') Systems with the general form <math> y(t) = x(t)c(t) </math> where <math>c(t)</math> is the ''carrier signal'' and <math>x(t)</math> is the ''modulating signal''. The ''carrier signal'' has its amplitude multiplied (modulated) by the information-bearing ''modulating signal''. | #'''Complex Exponential and Sinusoidal Amplitude Modulation''' (You Can Hear the Music on the Amplitude Modulation Radio -''Everclear'') Systems with the general form <math> y(t) = x(t)c(t) </math> where <math>c(t)</math> is the ''carrier signal'' and <math>x(t)</math> is the ''modulating signal''. The ''carrier signal'' has its amplitude multiplied (modulated) by the information-bearing ''modulating signal''. | ||
##Complex exponential ''carrier signal'': <math>c(t) = e^{\omega_c t + \theta_c}</math> | ##Complex exponential ''carrier signal'': <math>c(t) = e^{\omega_c t + \theta_c}</math> | ||
Line 59: | Line 132: | ||
:2. '''The Region of Convergence for Laplace Transforms''' | :2. '''The Region of Convergence for Laplace Transforms''' | ||
− | |||
:3. '''The Inverse Laplace Transform''' | :3. '''The Inverse Laplace Transform''' |
Latest revision as of 09:05, 11 December 2008
Contents
- 1 Summary of Information for the Final
- 1.1 ABET Outcomes
- 1.2 Chapter 1_ECE301Fall2008mboutin: CT and DT Signals and Systems
- 1.3 Chapter 2_ECE301Fall2008mboutin: Linear Time-Invariant Systems
- 1.4 Chapter 3_ECE301Fall2008mboutin: Fourier Series Representation of Period Signals
- 1.5 Chapter 4_ECE301Fall2008mboutin: CT Fourier Transform
- 1.6 Chapter 5_ECE301Fall2008mboutin: DT Fourier Transform
- 1.7 Chapter 7_ECE301Fall2008mboutin: Sampling
- 1.8 Chapter 8_ECE301Fall2008mboutin: Communication Systems
- 1.9 Chapter 9_ECE301Fall2008mboutin: Laplace Transformation
- 1.10 Chapter 10_ECE301Fall2008mboutin: z-Transformation
Summary of Information for the Final
ABET Outcomes
- (a) an ability to classify signals (e.g. periodic, even) and systems (e.g. causal, linear) and an understanding of the difference between discrete and continuous time signals and systems. [1,2;a]
- (b) an ability to determine the impulse response of a differential or difference equation. [1,2;a]
- (c) an ability to determine the response of linear systems to any input signal convolution in the time domain. [1,2,4;a,e,k]
- (d) an understanding of the deffinitions and basic properties (e.g. time-shifts,modulation, Parseval's Theorem) of Fourier series, Fourier transforms, bi-lateral Laplace transforms, Z transforms, and discrete time Fourier transforms and an ability to compute the transforms and inverse transforms of basic examples using methods such as partial fraction expansion_ECE301Fall2008mboutin. [1,2;a]
- (e) an ability to determine the response of linear systems to any input signal by transformation to the frequency domain, multiplication, and inverse transformation to the time domain. [1,2,4;a,e,k]
- (f) an ability to apply the Sampling theorem_ECE301Fall2008mboutin, reconstruction, aliasing, and Nyquist_ECE301Fall2008mboutin theorem to represent continuous-time signals in discrete time so that they can be processed by digital computers. [1,2,4;a,e,k]
Chapter 1_ECE301Fall2008mboutin: CT and DT Signals and Systems
- CT and DT Signals
- Transformations of the Independent Variable
- Exponential and Sinusoidal Signals
- The Unit Impulse and Unit Step Functions
- CT and DT Systems
- Basic System Properties
- Memory
- Invertibility and Inverse Systems
- Causality
- Stability
- Time Invariance
- Linearity
Chapter 2_ECE301Fall2008mboutin: Linear Time-Invariant Systems
- Convolution in DT
- Convolution in CT
- LTI System Properties
- Commutative
- Distributive
- Associative
- LTI Systems Memory
- LTI Invertibility
- LTI Causality
- LTI Stability
- The Unit Step Response of an LTI System
- Causal LTI Systems Described by Differential and Difference Equations
Chapter 3_ECE301Fall2008mboutin: Fourier Series Representation of Period Signals
DT Fourier Series Pair
- $ x[n] = \sum_{k = <N>}a_ke^{jk\omega_0 n} = \sum_{k = <N>}a_ke^{jk(2\pi / N) n} $
- $ a_k = \frac{1}{N}\sum_{k = <N>}x[n]e^{-jk\omega_0 n} = \frac{1}{N}\sum_{k = <N>}x[n]e^{-jk(2\pi /N) n} $
CT Fourier Series Pair
- $ x(t) = \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0 t}= \sum_{k = -\infty}^{+\infty} a_k e^{jk(2\pi) /T t} $
- $ a_k = \frac{1}{T}\int_{T} x(t)e^{-jk\omega_0 t}\, dt = \frac{1}{T}\int_{T} x(t)e^{-jk(2\pi /T) t}\, dt $
- Response of LTI Systems to Complex Exponentials
- FS Representations of CT Periodic Signals
- FS Representations of DT Periodic Signals
- Properties of FS
- FS and LTI Systems
- Filtering
Chapter 4_ECE301Fall2008mboutin: CT Fourier Transform
- $ \mathcal{X}(\omega) = \int_{-\infty}^{+\infty}x(t)e^{-j\omega t} \,dt $
- $ x(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}\mathcal{X}(\omega)e^{j\omega t} \,dt $
- Representing Aperiodic Signals: CT Fourier Transform
- FT for Periodic Signals
- Properties of the CT FT
- Linearity
- Time Shifting
- Conjugation and Conjugate Symmetry
- Differentiating and Integrating
- Time and Frequency Scaling
- Duality
- Parseval's Relationship
- The Convolution Property
- The Multiplication Property
- Systems Characterized by Linear Constant-Coefficient Differential Equations
Chapter 5_ECE301Fall2008mboutin: DT Fourier Transform
- $ X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n} $
- $ x[n] = \frac{1}{2\pi}\int_{2\pi} X(e^{j\omega})e^{j\omega n} $
- Representing Aperiodic Signals: DT Fourier Transform
- FT for Periodic Signals
- Properties of the CT FT
- Periodicity of the Discrete-Time FT
- Linearity
- Time Shifting and Frequency Scaling
- Conjugation and Conjugate Symmetry
- Differencing and Accumulation
- Time Reversal
- Time Expansion
- Differentiation in Frequency
- Parseval's Relationship
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by Linear Constant-Coefficient Difference Equations
Chapter 7_ECE301Fall2008mboutin: Sampling
- Sampling
- Impulse Train Sampling
- The Sampling theorem_ECE301Fall2008mboutin and the Nyquist
- Signal Reconstruction Using Interpolation: the fitting of a continuous signal to a set of sample values
- Sampling with a Zero-Order Hold (Horizontal Plateaus)
- Linear Interpolation (Connect the Samples)
- Undersampling: Aliasing
- Processing CT Signals Using DT Systems (Vinyl to CD)
- Analog vs. Digital: The Show-down (A to D conversion -> Discrete-Time Processing System -> D to A conversion
- Sampling DT Signals (CD to MP3 albeit a complicated sampling algorithm, MP3 is less dense signal)
Chapter 8_ECE301Fall2008mboutin: Communication Systems
- Complex Exponential and Sinusoidal Amplitude Modulation (You Can Hear the Music on the Amplitude Modulation Radio -Everclear) Systems with the general form $ y(t) = x(t)c(t) $ where $ c(t) $ is the carrier signal and $ x(t) $ is the modulating signal. The carrier signal has its amplitude multiplied (modulated) by the information-bearing modulating signal.
- Complex exponential carrier signal: $ c(t) = e^{\omega_c t + \theta_c} $
- Sinusoidal carrier signal: $ c(t) = cos(\omega_c t + \theta_c ) $
- Recovering the Information Signal $ x(t) $ Through Demodulation
- Synchronous
- Asynchronous
- Frequency-Division Multiplexing (Use the Entire Width of that Frequency Band!)
- Single-Sideband Sinusoidal Amplitude Modulation (Save the Bandwidth, Save the World!)
- AM with a Pulse-Train Carrier Digital Airwaves
- $ c(t) = \sum_{k=-\infty}^{+\infty}\frac{sin(k\omega_c \Delta /2)}{\pi k}e^{jk\omega_c t} $
- Time-Division Multiplexing "Dost thou love life? Then do not squander time; for that's the stuff life is made of." -Benjamin Franklin)
Chapter 9_ECE301Fall2008mboutin: Laplace Transformation
- 1. The Laplace Transform
- $ X(s) = \int_{-\infty}^{+\infty}x(t)e^{-st}\, dt $
- $ \mathcal{F}\lbrace x(t)e^{-\sigma t} \rbrace = \mathcal{X}(\omega) = \int_{-\infty}^{+\infty}x(t)e^{-\sigma t}e^{-j\omega t}\, dt $
- 2. The Region of Convergence for Laplace Transforms
- 3. The Inverse Laplace Transform
- $ x(t) = \frac{1}{2\pi}\int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}\,ds $
Chapter 10_ECE301Fall2008mboutin: z-Transformation
- 1. The z-Transform
- $ X(z) = \sum_{n = -\infty}^{+\infty}x[n]z^{-n} $
- 2. Region of Convergence for the z-Transform
- 3. The Inverse z-Transform
- $ x[n] = \frac{1}{2\pi j} \oint X(z)z^{n-1}\,dz $
- 4. z-Transform Properties
- 5. z-Transform Pairs