(→Amplitude Modulation) |
(→Amplitude Modulation) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Amplitude Modulation == | == Amplitude Modulation == | ||
− | Def:Amplitude modulation (AM) is a method of | + | Def:Amplitude modulation (AM) is a method of data onto an carrier waveform.The highest frequency of the modulating data is normally less than 10 percent of the carrier frequency. |
<math>x(t) \longrightarrow\otimes\longrightarrow y(t)=x(t)c(t) </math> | <math>x(t) \longrightarrow\otimes\longrightarrow y(t)=x(t)c(t) </math> | ||
Line 14: | Line 14: | ||
There are two important types of carriers which are "complex exponential" and "sinusoidal" | There are two important types of carriers which are "complex exponential" and "sinusoidal" | ||
− | |||
== Complex expenetial == | == Complex expenetial == | ||
Line 23: | Line 22: | ||
<math>\theta_c = </math> Phase of carrier | <math>\theta_c = </math> Phase of carrier | ||
+ | |||
+ | complex exponential modulation | ||
+ | |||
+ | <math>y(t) = e^{j\omega_c t}x(t)</math> | ||
+ | |||
+ | <math>y(\omega) = F(e^{j\omega_c t}x(t))</math> | ||
+ | |||
+ | <math>=\frac{1}{2 \pi}F(e^{j\omega_c t})X(\omega)</math> | ||
+ | |||
+ | <math>=\frac{1}{2\pi} 2\pi \delta (\omega - \omega_c) * X(\omega)</math> | ||
+ | |||
+ | <math>=X(\omega - \omega_c)\!</math> | ||
+ | |||
+ | Demodulate the complex exponential | ||
+ | |||
+ | <math>y(t) \longrightarrow\otimes\longrightarrow x(t) </math> | ||
+ | |||
+ | <math>\uparrow </math> | ||
+ | |||
+ | <math>e^{-j\omega_ct}</math> | ||
+ | |||
+ | <math>y(t) = e^{j\omega_c t}x(t)</math> | ||
+ | |||
+ | <math>e^{-j\omega_c t}y(t) = e^{-j\omega_c t}e^{j\omega_c t}x(t)</math> | ||
+ | |||
+ | <math>=x(t)\!</math> | ||
+ | |||
+ | |||
+ | == Source == | ||
+ | http://searchcio-midmarket.techtarget.com |
Latest revision as of 06:37, 17 November 2008
Amplitude Modulation
Def:Amplitude modulation (AM) is a method of data onto an carrier waveform.The highest frequency of the modulating data is normally less than 10 percent of the carrier frequency.
$ x(t) \longrightarrow\otimes\longrightarrow y(t)=x(t)c(t) $
$ \uparrow $
c(t)
x(t) : "information bearing signal"
c(t) : "carrier"
There are two important types of carriers which are "complex exponential" and "sinusoidal"
Complex expenetial
$ c(t) = e ^{j(\omega_c t + \theta_c)} $
$ \omega_c = $ Frequency of carrier
$ \theta_c = $ Phase of carrier
complex exponential modulation
$ y(t) = e^{j\omega_c t}x(t) $
$ y(\omega) = F(e^{j\omega_c t}x(t)) $
$ =\frac{1}{2 \pi}F(e^{j\omega_c t})X(\omega) $
$ =\frac{1}{2\pi} 2\pi \delta (\omega - \omega_c) * X(\omega) $
$ =X(\omega - \omega_c)\! $
Demodulate the complex exponential
$ y(t) \longrightarrow\otimes\longrightarrow x(t) $
$ \uparrow $
$ e^{-j\omega_ct} $
$ y(t) = e^{j\omega_c t}x(t) $
$ e^{-j\omega_c t}y(t) = e^{-j\omega_c t}e^{j\omega_c t}x(t) $
$ =x(t)\! $