(Discrete-Time Processing of Continous-Time Signals)
 
(15 intermediate revisions by the same user not shown)
Line 14: Line 14:
 
<math>T</math> Sampling Period
 
<math>T</math> Sampling Period
  
<math>\frac{2\pi}/T = \omega_s</math> Sampling Frequency
+
<math>\frac{2\pi}{T} = \omega_s</math> Sampling Frequency
  
 
<math>T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m</math>
 
<math>T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m</math>
 +
 +
<math>\omega_m</math> Maximum frequencye for a band limited signal
 +
 +
<math>NQ = 2\omega_m</math> Nyquist Rate - The frequencye the sampling frequency should be, or greater.
 +
 +
<math>\omega_c </math> Cut off frequency for a filter
 +
 +
 +
== Impulse-Train Sampling ==
 +
 +
Let <math>x(t)</math> be a continuous signal
 +
 +
Let <math>p(t) = \sum_{n = -\infty}^\infty \delta(t - nT)</math>
 +
 +
<math>x(t)p(t) = x_p(t)</math>
 +
 +
<math>x_p(t) = x(t) \sum_{n = -\infty}^\infty \delta(t - nT)</math>
 +
 +
<math>x_p(t) = \sum_{n = -\infty}^\infty x(t) \delta(t - nT)</math>
 +
 +
<math>x_p(t) = \sum_{n = -\infty}^\infty x(xT) \delta(t - nT)</math>
 +
 +
    If <math>\omega_s</math> is not greater then <math>2\omega_m</math> <b>Aliasing</b> with happen.
 +
 +
== Recoving an Impulse-Train ==
 +
 +
<math>x_p(t) -> H(\omega) -> x(t)</math>
 +
 +
Where <math>H(\omega) = T, |\omega| < \omega_c, else  0</math>
 +
 +
<math>F^{-1}(H(\omega)) = \frac{T\sin(\omega_ct)}{\pi t}</math>
 +
 +
    Pretty much apply a low pass filter to <math>x_p(t)</math>
 +
 +
    Note: <math>\omega_m < \omega_c < \omega_s - \omega_m</math>
 +
   
 +
    exmaple <math>\omega_c = \frac{\omega_s}{2}</math>
 +
 +
== Honorable Mentions in Sampling ==
 +
=== Zero-order hold operation ===
 +
=== First-order hold operation ===
 +
 +
== Discrete-Time Processing of Continous-Time Signals ==
 +
 +
<math>x(t)</math> --> C/D Conversion --> <math>x_d[n]</math> --> <math>H_d</math> --> <math>y_d[n]</math> --> D/C Conversion --> <math>y(t)</math>

Latest revision as of 12:09, 10 November 2008

Sampling Theorem

Let $ \omega_m $ be a non-negative number.

Let $ x(t) $ be a signal with $ X(\omega) = 0 $ when $ |\omega| > \omega_m $.

Consider the samples $ x(nT) $ for $ n = 0, +-1, +-2, ... $

If $ T < \frac{1}{2}(\frac{2\pi}{\omega_m}) $ then $ x(t) $ can be uniquely recovered from its samples.


Variable Definitions

$ T $ Sampling Period

$ \frac{2\pi}{T} = \omega_s $ Sampling Frequency

$ T < \frac{1}{2}(\frac{2\pi}{\omega_m}) <==> \omega_s>2\omega_m $

$ \omega_m $ Maximum frequencye for a band limited signal

$ NQ = 2\omega_m $ Nyquist Rate - The frequencye the sampling frequency should be, or greater.

$ \omega_c $ Cut off frequency for a filter


Impulse-Train Sampling

Let $ x(t) $ be a continuous signal

Let $ p(t) = \sum_{n = -\infty}^\infty \delta(t - nT) $

$ x(t)p(t) = x_p(t) $

$ x_p(t) = x(t) \sum_{n = -\infty}^\infty \delta(t - nT) $

$ x_p(t) = \sum_{n = -\infty}^\infty x(t) \delta(t - nT) $

$ x_p(t) = \sum_{n = -\infty}^\infty x(xT) \delta(t - nT) $

    If $ \omega_s $ is not greater then $ 2\omega_m $ Aliasing with happen.

Recoving an Impulse-Train

$ x_p(t) -> H(\omega) -> x(t) $

Where $ H(\omega) = T, |\omega| < \omega_c, else 0 $

$ F^{-1}(H(\omega)) = \frac{T\sin(\omega_ct)}{\pi t} $

   Pretty much apply a low pass filter to $ x_p(t) $
    Note: $ \omega_m < \omega_c < \omega_s - \omega_m $
    
    exmaple $ \omega_c = \frac{\omega_s}{2} $

Honorable Mentions in Sampling

Zero-order hold operation

First-order hold operation

Discrete-Time Processing of Continous-Time Signals

$ x(t) $ --> C/D Conversion --> $ x_d[n] $ --> $ H_d $ --> $ y_d[n] $ --> D/C Conversion --> $ y(t) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett