(New page: <math>te^{-at}u(t) ---> (\frac{1}{a+j\omega})^2 </math> where a is real and greater than 0)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>te^{-at}u(t) ---> (\frac{1}{a+j\omega})^2 </math>  
+
<math>x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 </math>
where a is real and greater than 0
+

Latest revision as of 11:07, 14 November 2008

$ x(t)=te^{-at}u(t), \text{ where }a\text{ is real,} a>0 \longrightarrow {\mathcal X}(\omega)=(\frac{1}{a+j\omega})^2 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett