(New page: == EXAM 1== Problem 1. is <math> x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} </math> periodic?)
 
(EXAM 1)
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
Problem 1.
 
Problem 1.
  
is <math> x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} </math> periodic?
+
is  
 +
 
 +
<math> x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} </math>  
 +
 
 +
periodic?
 +
 
 +
We know that for a signal to be periodic
 +
 
 +
<math> x(t) = x(t + T) </math>
 +
 
 +
So we shift the function by a arbitrary number to try to prove the statement above
 +
 
 +
<math> x(t+1) =  \sum_{k = -\infty}^\infty \frac{1}{(t+1+2k)^{2}+1} </math>
 +
 
 +
 
 +
<math> x(t+4) =  \sum_{k = -\infty}^\infty \frac{1}{(t+2(\frac{1}{2}+k))^{2}+1} </math>
 +
 
 +
Then we  set <math> r = \frac{1}{2}+k </math> to yield,
 +
 
 +
<math> =  \sum_{k = -\infty}^\infty \frac{1}{(t+2r)^{2}+1} </math>
 +
 
 +
Since this signal is equivalent to x(t), then x(t) is periodic.

Latest revision as of 17:41, 15 October 2008

EXAM 1

Problem 1.

is

$ x(t) = \sum_{k = -\infty}^\infty \frac{1}{(t+2k)^{2}+1} $

periodic?

We know that for a signal to be periodic

$ x(t) = x(t + T) $

So we shift the function by a arbitrary number to try to prove the statement above

$ x(t+1) = \sum_{k = -\infty}^\infty \frac{1}{(t+1+2k)^{2}+1} $


$ x(t+4) = \sum_{k = -\infty}^\infty \frac{1}{(t+2(\frac{1}{2}+k))^{2}+1} $

Then we set $ r = \frac{1}{2}+k $ to yield,

$ = \sum_{k = -\infty}^\infty \frac{1}{(t+2r)^{2}+1} $

Since this signal is equivalent to x(t), then x(t) is periodic.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang