(Problem 5)
(Problem 5)
 
Line 7: Line 7:
 
<math>H(z)=\sum_{k=-\infty}^{\infty}h[k]z^{-k}</math>
 
<math>H(z)=\sum_{k=-\infty}^{\infty}h[k]z^{-k}</math>
  
<math>H(z)=z+\frac{1}{z}</math> due to the two step functions.
+
<math>H(z)=1+\frac{1}{z}</math> due to the two step functions.
 +
 
 +
===Part B===
 +
First, recognize that <math>\cos(\pi n)=(-1)^n</math>.
 +
 
 +
 
 +
The response to the input signal <math>z^n</math> is <math>H(z)z^n</math>, giving
 +
 
 +
<math>(1+\frac{1}{-1})(-1)^n=0</math>.

Latest revision as of 02:59, 15 October 2008

Problem 5

An LTI system has unit impulse response $ h[n]=u[n]-u[n-2] $. Compute (a) the system's function $ H(z) $ and (b) the system's response to the input $ x[n]=\cos(\pi n) $.

Part A

First, note this is discrete time. Doing the problem in continuous time gives a very different result, as I tragically learned on the test...

$ H(z)=\sum_{k=-\infty}^{\infty}h[k]z^{-k} $

$ H(z)=1+\frac{1}{z} $ due to the two step functions.

Part B

First, recognize that $ \cos(\pi n)=(-1)^n $.


The response to the input signal $ z^n $ is $ H(z)z^n $, giving

$ (1+\frac{1}{-1})(-1)^n=0 $.

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin