(One intermediate revision by one other user not shown)
Line 1: Line 1:
<math>(2) \sum^{\infty}_{n=-\infty} \delta(t-nT) -> \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\,</math>. . . . . . . . . . . . . .    . . . . . .  . . .''','''
+
<math>x(t)=\sum^{\infty}_{n=-\infty} \delta(t-nT) \longrightarrow {\mathcal X}(\omega)= \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\,</math>

Latest revision as of 11:20, 14 November 2008

$ x(t)=\sum^{\infty}_{n=-\infty} \delta(t-nT) \longrightarrow {\mathcal X}(\omega)= \frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T})\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett