(New page: == Exam1 question 3. == An LTI system has unit impulse response <math>h[n] = u[-n]</math>. compute the system's response to the input <math>x[n]=2^nu[-n]</math>. (Simplify your answer u...) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
An LTI system has unit impulse response <math>h[n] = u[-n]</math>. compute the system's response to the | An LTI system has unit impulse response <math>h[n] = u[-n]</math>. compute the system's response to the | ||
input <math>x[n]=2^nu[-n]</math>. (Simplify your answer until all <math>\sum</math> signs disappear.) | input <math>x[n]=2^nu[-n]</math>. (Simplify your answer until all <math>\sum</math> signs disappear.) | ||
+ | |||
+ | |||
+ | == Solution == | ||
+ | |||
+ | |||
+ | <math>y[n] = x[n] * h[n]\!</math> | ||
+ | |||
+ | <math>=\sum_{k=-\infty}^{\infty} x[k]h[n-k]</math> | ||
+ | |||
+ | <math>=\sum_{k=-\infty}^{\infty} 2^{k}u[-k]u[-(n-k)]</math> | ||
+ | |||
+ | <math>=\sum_{k=-\infty}^{0}2^{k}u[-u+k]</math> | ||
+ | |||
+ | <math> r = -k \!</math> | ||
+ | |||
+ | <math>=\sum_{r=0}^{\infty}(\frac{1}{2})^{r}u[-n-r]</math> | ||
+ | |||
+ | <math>-n-r \geqq 0</math> | ||
+ | |||
+ | <math>-n\geqq r</math> | ||
+ | |||
+ | <math>=(\sum_{r=0}^{-n}(\frac{1}{2})^{n})</math> | ||
+ | |||
+ | if -n>= 0 | ||
+ | |||
+ | else , 0 | ||
+ | |||
+ | therefore, | ||
+ | |||
+ | <math> =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}}</math> | ||
+ | |||
+ | if n=<0 | ||
+ | |||
+ | else, 0 |
Latest revision as of 10:06, 14 October 2008
Exam1 question 3.
An LTI system has unit impulse response $ h[n] = u[-n] $. compute the system's response to the input $ x[n]=2^nu[-n] $. (Simplify your answer until all $ \sum $ signs disappear.)
Solution
$ y[n] = x[n] * h[n]\! $
$ =\sum_{k=-\infty}^{\infty} x[k]h[n-k] $
$ =\sum_{k=-\infty}^{\infty} 2^{k}u[-k]u[-(n-k)] $
$ =\sum_{k=-\infty}^{0}2^{k}u[-u+k] $
$ r = -k \! $
$ =\sum_{r=0}^{\infty}(\frac{1}{2})^{r}u[-n-r] $
$ -n-r \geqq 0 $
$ -n\geqq r $
$ =(\sum_{r=0}^{-n}(\frac{1}{2})^{n}) $
if -n>= 0
else , 0
therefore,
$ =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} $
if n=<0
else, 0