(New page: == Test Correction of # 3 == An LTI system has unit impulse response <math> h[n] = u[-n] </math> Compute the system's response to the input <math> x[n] = 2^{n}u[-n] </math>)
 
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
 
== Test Correction of # 3 ==
 
== Test Correction of # 3 ==
  
Line 5: Line 4:
  
 
Compute the system's response to the input <math> x[n] = 2^{n}u[-n] </math>
 
Compute the system's response to the input <math> x[n] = 2^{n}u[-n] </math>
 +
 +
(Simplify answer until all summation signs disappear.)
 +
 +
h[n] = u[-n]
 +
 +
x[n] = <math>2^{n}</math>u[-n]
 +
 +
y[n] = x[n] * h[n]
 +
 +
= <math> \sum^{\infty}_{k = -\infty} 2^{k}u[-k]u[-n--k]</math>
 +
 +
since -k > 0 and k < 0 the summation parameters change
 +
 +
= <math> \sum^{0}_{k = -\infty} 2^{k}u[-n+k]</math>
 +
 +
other step function changes parameters again
 +
 +
n = k
 +
 +
= <math> \sum^{0}_{k = n} 2^{k} </math>
 +
 +
 +
 +
= <math> \sum^{-n}_{0} \frac{1}{2}^{k} </math> since n <= 0; </math>
 +
 +
This is then a property that can be exchanged to get rid of the summation signs using a general solution.
 +
 +
{ = <math> \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} </math> For all k < n and n <= 0
 +
 +
 +
{ = 0 , n > 0
 +
 +
The transform of this is then=
 +
<math> (2-2^{n})u[-n]</math>

Latest revision as of 09:57, 12 October 2008

Test Correction of # 3

An LTI system has unit impulse response $ h[n] = u[-n] $

Compute the system's response to the input $ x[n] = 2^{n}u[-n] $

(Simplify answer until all summation signs disappear.)

h[n] = u[-n]

x[n] = $ 2^{n} $u[-n]

y[n] = x[n] * h[n]

= $ \sum^{\infty}_{k = -\infty} 2^{k}u[-k]u[-n--k] $

since -k > 0 and k < 0 the summation parameters change

= $ \sum^{0}_{k = -\infty} 2^{k}u[-n+k] $

other step function changes parameters again

n = k

= $ \sum^{0}_{k = n} 2^{k} $


= $ \sum^{-n}_{0} \frac{1}{2}^{k} $ since n <= 0; </math>

This is then a property that can be exchanged to get rid of the summation signs using a general solution.

{ = $ \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} $ For all k < n and n <= 0


{ = 0 , n > 0

The transform of this is then= $ (2-2^{n})u[-n] $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin