(New page: (1) <math> \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} -> 2\pi\sum^{infty}_{k=-infty}a_{k}\delta(w-kw_{0})</math>)
 
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
(1) <math> \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} -> 2\pi\sum^{infty}_{k=-infty}a_{k}\delta(w-kw_{0})</math>
+
<math>x(t)= \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} \longrightarrow {\mathcal X}(\omega)= 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})\,</math>

Latest revision as of 11:20, 14 November 2008

$ x(t)= \sum^{\infty}_{k=-\infty} a_{k}e^{jkw_{0}t} \longrightarrow {\mathcal X}(\omega)= 2\pi\sum^{\infty}_{k=-\infty}a_{k}\delta(w-kw_{0})\, $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood