(One intermediate revision by the same user not shown)
Line 13: Line 13:
  
 
<math> = \sum^{-n}_{0} \frac{1}{2}^{k},</math> for n=<0 <br>
 
<math> = \sum^{-n}_{0} \frac{1}{2}^{k},</math> for n=<0 <br>
<math> = 0                            ,</math>for n>0
+
<math> = 0                            ,</math>for n>0<br>
  
<math> =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}}</math><br>
+
<math> =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}}</math>for n=<0 <br>
<math> = 0                            </math>for n>0
+
<math> = 0,                           </math>for n>0<br>
  
<math> =(2-2^{n})u[-n]/,</math><br>
+
<math> =(2-2^{n})u[-n]</math><br>

Latest revision as of 13:31, 10 October 2008

Question 3.

  • An LTI system has unit impulse response h[n] =u[-n]. Compute the system's response to the input $ x[n] = 2^{n}u[-n]. $ Simplify your answer until all $ \sum $ signs disappear.)


Answer

$ y[n] = x[n] * h[n] , where * is convolution/, $

$ = \sum^{\infty}_{k=-\infty} 2^{k}u[-k]u[-n+k] $

$ = \sum^{0}_{k=-\infty} 2^{k}u[-n+k] $

$ = \sum^{0}_{k=n} 2^{k} $

$ = \sum^{-n}_{0} \frac{1}{2}^{k}, $ for n=<0
$ = 0 , $for n>0

$ =\frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} $for n=<0
$ = 0, $for n>0

$ =(2-2^{n})u[-n] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett