(New page: ==Differentiation/Integration== <math>\frac{dx(t)}{dt}\longarrowright j\omega \chi (\omega)</math>)
 
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Differentiation/Integration==
+
<math>\; \; \; (1)\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)\; \; \; \; \; \; (2) \int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega)</math>
<math>\frac{dx(t)}{dt}\longarrowright j\omega \chi (\omega)</math>
+

Latest revision as of 18:20, 8 October 2008

$ \; \; \; (1)\frac{dx(t)}{dt} \rightarrow j\omega \Chi (\omega)\; \; \; \; \; \; (2) \int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{1}{j\omega}\Chi (\omega) + \pi \Chi (0) \delta (\omega) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett